
Statement-level Statement-level
read consistency read consistency
in read-committed in read-committed

transactionstransactions

Prague 2016 Prague 2016 Firebird 4 Firebird 42

Non-consistent reads problem

● Attachment 1
INSERT INTO T …

INSERT INTO T …

-- 1000 recs

COMMIT;

INSERT INTO T …

INSERT INTO T …

-- 1000 recs

COMMIT;

...

● Attachment 2
SELECT COUNT(*) FROM T;

SELECT COUNT(*) FROM T;

...

Prague 2016 Prague 2016 Firebird 4 Firebird 43

Non-consistent reads problem

● Expected results
1000

2000

…

N * 1000

● Actual results
0

200

1000

1823

3000

4028

…

Prague 2016 Prague 2016 Firebird 4 Firebird 44

Non-consistent reads problem

● Attachment 1
INSERT recs 0...199

INSERT recs 200...399

INSERT recs 400...599

INSERT recs 600...799

INSERT recs 800...999

COMMIT;

● Attachment 2
READ recs 0...

...

...

799

not committed – ignored

READ recs 800...999

committed – counted

RESULT = 200

Prague 2016 Prague 2016 Firebird 4 Firebird 45

Non-consistent reads problem

● What is required to solve the issue ?
● Every top-level statement in read-committed transaction

require own stable view of database (snapshot)
● Every user cursor in read-committed transaction also

require own snapshot (until closed)

Prague 2016 Prague 2016 Firebird 4 Firebird 46

Database snapshots: traditional

● Database snapshot allows to know state of any
transaction when snapshot created
● All transaction states are recorded at Transaction

Inventory (TIP)
● Copy of TIP created at some moment allows later to know

state of any given transaction at that moment

● If some transaction state is known as “active” in any
used snapshot, there should be guarantee that engine
could read records committed before this transaction
changed it.
● Special database marker OST used as garbage collection

threshold

Prague 2016 Prague 2016 Firebird 4 Firebird 47

Non-consistent reads : solution

● Obvious solution: use private TIP copy
● Every top-level statement should take copy of active part

of TIP and use it instead of live TIP data
– same as snapshot transactions

Prague 2016 Prague 2016 Firebird 4 Firebird 48

Non-consistent reads : solution

● Obvious solution: drawbacks
● To make it work at read-committed read-only transactions

it is necessary to not allow OST to move above RC RO
transaction number
– Long lived RC RO transaction will block GC

● Cost of creating private TIP copy for every statement is
non-zero
– Could affect performance

● RC transactions will use private copy of TIP instead of
shared TIP cache
– Memory usage will grow

Prague 2016 Prague 2016 Firebird 4 Firebird 49

Database snapshots: commits order

● It is enough to know order of commits to know state of
any transaction when snapshot created:
● If other tx is active (dead) in TIP, consider it as active

(dead), obviously
● If other tx is committed in TIP - we should know when it

was committed:
– before our snapshot created – consider it as committed
– after our snapshot created – consider it as active

Prague 2016 Prague 2016 Firebird 4 Firebird 410

Database snapshots: commits order

● Commits order:
● New global per-database counter: Commit Number (CN)

– In-memory only, no need to store in database
– Initialized when database is started
– When any transaction is committed, global Commit Number

is incremented and its value is assotiated with transaction
(i.e. we just defined “transaction commit number“, or
transaction CN)

Prague 2016 Prague 2016 Firebird 4 Firebird 411

Database snapshots: commits order

● Possible values of transaction Commit Number
● Transaction is active : CN = 0

– CN_ACTIVE
● Transaction is in limbo: CN = MAX_TRA_NUM - 1

– CN_LIMBO
● Dead transaction: CN = MAX_TRA_NUM - 2

– CN_DEAD
● Transactions committed before database started (i.e. older

than OIT) : CN = 1

– CN_PREHISTORIC
● Transactions committed while database works:

– CN_PREHISTORIC < CN < CN_DEAD

Prague 2016 Prague 2016 Firebird 4 Firebird 412

Database snapshots: commits order

● Database snapshot is defined as
● Private value of global Commit Number at moment when

database snapshot is created, and
● Common list of all transactions with assotiated CN's

– Transactions older than OIT are known to be committed
thus not included in this list

Prague 2016 Prague 2016 Firebird 4 Firebird 413

Database snapshots: commits order

● Database snapshot could be created
● For every transaction

– Useful for snapshot (concurrency) transactions
● For every statement and for every cursor

– Useful for read-committed transactions
– Allows to solve statement-level read consistency probem

Prague 2016 Prague 2016 Firebird 4 Firebird 414

Database snapshots: commits order

● In-memory cost of database snapshot:
● Per-snapshot - just a number (64 bit)
● Per-database

– List of all active snapshots
– List of all transactions between OIT and Next with

assotiated commit numbers

Prague 2016 Prague 2016 Firebird 4 Firebird 415

Database snapshots: commits order

Memory usage comparison

Traditional Commits Order

TIP on disk
Array of 2-bit states for

every transaction
Array of 2-bit states for

every transaction

TIP cache in memory
Array of 2-bit states for
every transaction since

OIT

Array of 64-bit Commit
Numbers of every

transaction since OIT

Private snapshot
Array of 2-bit states of
transactions between

OIT and Next

Single 64-bit Commit
Number

List of active
snapshots

Array of 64-bit Commit
Numbers

Prague 2016 Prague 2016 Firebird 4 Firebird 416

Database snapshots: commits order

● Record visibility rule
● Compare CN of our snapshot (CN_SNAP) and CN of

transaction which created record (CN_REC):

CN_REC == CN_ACTIVE,

CN_REC == CN_LIMBO

– Invisible

CN_REC == CN_DEAD

– Backout dead version (or read back version) and repeat

CN_REC > CN_SNAP

– Invisible

CN_REC <= CN_SNAP

– Visible

Prague 2016 Prague 2016 Firebird 4 Firebird 417

Database snapshots: commits order

● Record visibility rule: consequence
● If some snapshot CN could see some record version then all

snapshots with numbers > CN also could see same record
version

● Garbage collection rule
● If all existing snapshots could see some record version then all

it backversions could be removed, or
● If oldest active snapshot could see some record version then

all it backversions could be removed

Prague 2016 Prague 2016 Firebird 4 Firebird 418

Long running transactions

Sequence of actions

1 Tx 10 start

2 Tx 10 insert

3 Tx 10 commit

4 Tx 11 start

5 Tx 12 start

6 Tx 12 update

7 Tx 12 commit

8 Tx 13 start

9 Tx 13 update

10 Tx 13 commit

11 Tx 14 start

12 Tx 14 update

13 Tx 14 commit

14 Tx 15 start

TIP

Tx State

10 committed

11 active

12 committed

13 committed

14 committed

15 active Tx 15

Tx 11

Tx 13 Tx 12Tx 14

Not needed versions, can't be removed !

Tx 10

Prague 2016 Prague 2016 Firebird 4 Firebird 419

Long running transactions

Sequence of actions

3 Tx 10 commit, CN = 5

4 Tx 11 start

 create snapshot 5

5 Tx 12 start

6 Tx 12 update

7 Tx 12 commit, CN = 6

8 Tx 13 start

9 Tx 13 update

10 Tx 13 commit, CN = 7

11 Tx 14 start

12 Tx 14 update

13 Tx 14 commit, CN = 8

14 Tx 15 start

 create snapshot 8

TIP

Tx State CN

10 committed 5

11 active

12 committed 6

13 committed 7

14 committed 8

15 active
Snap 8

Snap 5

Tx 13, cn 7 Tx 12, cn 6Tx 14, cn 8

Not needed versions, can it be removed ?

Tx 10, cn 5

Prague 2016 Prague 2016 Firebird 4 Firebird 420

Long running transactions

TIP

Tx State CN

10 committed 5

11 active

12 committed 6

13 committed 7

14 committed 8

15 active

Tx 13, cn 7 Tx 12, cn 6Tx 14, cn 8

Active snapshots

CN of snapshot

5

8

...

● Snapshots list is sorted
● First entry is oldest snapshot

● Which snapshot could see which record version ?
● CN_REC <= CN_SNAP

Tx 10, cn 5

Prague 2016 Prague 2016 Firebird 4 Firebird 421

Long running transactions

TIP

Tx State CN

10 committed 5

11 active

12 committed 6

13 committed 7

14 committed 8

15 active

Active snapshots

CN of snapshot

5

8

...

● Interesting value: oldest active snapshot which could
see given record version

● If few versions in a chain have the same (see above)
then all versions except of first one could be removed !

Tx 13, cn 7 Tx 12, cn 6Tx 14, cn 8 Tx 10, cn 5

Prague 2016 Prague 2016 Firebird 4 Firebird 422

Long running transactions

TIP

Tx State CN

10 committed 5

11 active

12 committed 6

13 committed 7

14 committed 8

15 active

Active snapshots

CN of snapshot

5

8

...

Record versions
chain

Oldest CN could
see the version

Can be
removed

Tx 14, cn 8 8 No

Tx 13, cn 7 8 Yes

Tx 12, cn 6 8 Yes

Tx 10, cn 5 5 No

Not needed versions,
can be removed !

Tx 13, cn 7 Tx 12, cn 6Tx 14, cn 8 Tx 10, cn 5

Prague 2016 Prague 2016 Firebird 4 Firebird 423

Intermediate record versions

Active snapshots

CN of snapshot

23

48

54

57

78

...

Visibility of record versions

Record versions
chain

Oldest CN could
see version

Could be
removed ?

Tx 345, cn 72 78 No

Tx 256, cn 65 78 Yes

Tx 287, cn 60 78 Yes

Tx 148, cn 34 48 No

Tx 124, cn 26 48 Yes

Tx 103, cn 18 23 No

CN 65 CN 60CN 72 CN 26 CN 18CN 34

Not needed versions, can be removed

Prague 2016 Prague 2016 Firebird 4 Firebird 424

Database snapshots: commits order

● Conclusions
● Statement-level read consistency problem will be solved
● Long running read-committed transactions will not block

garbage collection at all
● Long running snapshot transactions allow GC to clean

really unneeded versions early
● Long running statements (open cursors) in read-

committed transactions – same as snapshot transactions
● No need to mark read-committed read-only transaction as

committed at start

Prague 2016 Prague 2016 Firebird 4 Firebird 425

Questions ?Questions ?

Firebird official web site

Firebird tracker

THANK YOU FOR ATTENTIONTHANK YOU FOR ATTENTION

hvlad@users.sf.net

http://www.firebirdsql.org/
http://tracker.firebirdsql.org/
mailto:hvlad@users.sf.net?subject=6th%20Firebird%20Developers%20Day

	Страница 1
	Страница 2
	Страница 3
	Страница 4
	Страница 5
	Страница 6
	Страница 7
	Страница 8
	Страница 9
	Страница 10
	Страница 11
	Страница 12
	Страница 13
	Страница 14
	Страница 15
	Страница 16
	Страница 17
	Страница 18
	Страница 19
	Страница 20
	Страница 21
	Страница 22
	Страница 23
	Страница 24
	Страница 25

