
Firebird’s gfix Database
Housekeeping Utility

Norman Dunbar, Mark Rotteveel

Version 2.3, 24 February 2024

Table of Contents
1. Introduction. 3

2. Command Line Options . 4

3. Common gfix Options . 5

3.1. -? . 5

3.2. -PAR[ALLEL] . 5

3.3. -FE[TCH_PASSWORD] . 5

3.4. -USER . 6

3.5. -PA[SSWORD] . 6

3.6. -ROLE . 6

3.7. -TRU[STED] . 7

3.8. -Z . 7

3.9. More on Authentication . 7

4. Shadow Files . 9

4.1. Activating Shadows . 9

4.2. Killing Shadows. 10

5. Set Database Page Buffers . 13

6. Limbo Transaction Management . 15

6.1. Listing Limbo Transactions . 15

6.2. Committing Or Rolling Back. 16

6.3. Automatic Two-phase Recovery . 17

7. Changing The Database Mode . 18

8. Setting The Database Dialect . 20

9. Database Housekeeping And Garbage Collection. 22

9.1. Garbage. 22

9.1.1. Record Versions. 24

9.1.2. Cooperative Garbage Collection . 24

9.1.3. Background garbage Collection. 24

9.1.4. Combined Garbage Collection . 24

9.2. Setting Sweep Interval. 24

9.3. Manual Garbage Collection . 26

9.4. Disabling Automatic Sweeping . 26

10. Database Startup and Shutdown . 28

10.1. Database Shutdown . 28

10.1.1. Preventing New Connections. 28

10.1.2. Preventing New Transactions . 29

10.1.3. Force Closure . 29

10.2. Starting a Database . 30

10.3. New Startup and Shutdown States in Firebird 2.0 . 30

Table of Contents

1

10.4. Shutdown Cache Manager . 31

11. Database Page Space Utilisation . 33

12. Database Validation and Recovery . 34

12.1. Database Validation . 34

12.1.1. Default Validation. 34

12.1.2. Full Validation . 34

12.1.3. Read-only Validation . 35

12.1.4. Ignore Checksum Errors . 35

12.2. Database Recovery . 36

12.2.1. Recover a Corrupt Database. 36

12.2.2. Practical tips for databases recovery . 36

13. Database Write Mode . 38

14. Close Database Ignoring Linger Setting . 39

15. Rebuild ICU dependencies . 40

16. Replica Mode. 41

17. ODS Upgrade . 42

18. Caveats . 43

18.1. Shadows . 43

18.2. Response Codes Are Usually Zero. 43

18.3. Force Closing a Database . 44

18.4. Limbo Transactions . 44

18.4.1. Limbo Transaction Options — All The Same? . 44

18.4.2. Limbo Transactions — Can Be Backed Up. 44

Appendix A: Document history. 46

Appendix B: License notice . 48

Table of Contents

2

Chapter 1. Introduction
Gfix allows attempts to fix corrupted databases, starting and stopping of databases, resolving “in
limbo” transactions between multiple databases, changing the number of page buffers and so on.
Gfix is a general purpose tool for system administrators (and database owners) to make various
“system level” changes to their databases.

Almost all the gfix commands have the same format when typed on the command line:

gfix [commands and parameters] database_name

The commands and their options are described in the following sections. The database name is the
name of the primary database file, which for a single file database is simply the database name, and
for multi-file databases, it is the first data file added.

Coming up in the remainder of this manual, we will discuss the following:

• Command line options for the gfix database utility.

• Shadow file handling.

• Cache and buffer handling.

• Transaction management.

• Cache management.

• Starting and stopping a database.

• And much, much more …

Chapter 1. Introduction

3

Chapter 2. Command Line Options
Running gfix without a command (or an invalid command), or with the -? switch, results in the
following screen of helpful information:

gfix usage instructions for Firebird 5.0.0, with links to relevant sections

usage: gfix [options] <database>
plausible options are:
 -ac(tivate_shadow) activate shadow file for database usage
 -at(tach) shutdown new database attachments
 -b(uffers) set page buffers <n>
 -co(mmit) commit transaction <tr / all>
 -ca(che) shutdown cache manager
 -fu(ll) validate record fragments (-v)
 -fo(rce_shutdown) force database shutdown
 -fe(tch_password) fetch password from file
 -h(ousekeeping) set sweep interval <n>
 -i(gnore) ignore checksum errors
 -icu fix database to be usable with present ICU version
 -k(ill_shadow) kill all unavailable shadow files
 -l(ist) show limbo transactions
 -me(nd) prepare corrupt database for backup
 -mo(de) read_only or read_write database
 -nol(inger) close database ignoring linger setting for it
 -n(o_update) read-only validation (-v)
 -o(nline) database online <single / multi / normal>
 -pr(ompt) prompt for commit/rollback (-l)
 -par(allel) parallel workers <n> (-sweep, -icu)
 -pa(ssword) default password
 -repl(ica) replica mode <none / read_only / read_write>
 -role set SQL role name
 -r(ollback) rollback transaction <tr / all>
 -sq(l_dialect) set database dialect n
 -sw(eep) force garbage collection
 -sh(utdown) shutdown <full / single / multi>
 -tw(o_phase) perform automated two-phase recovery
 -tra(nsaction) shutdown transaction startup
 -tru(sted) use trusted authentication
 -up(grade) upgrade database ODS
 -u(se) use full or reserve space for versions
 -user default user name
 -v(alidate) validate database structure
 -w(rite) write synchronously or asynchronously
 -z print software version number

 Options can be abbreviated to the unparenthesized characters

 The links are not present in the actual gfix output.

Chapter 2. Command Line Options

4

Chapter 3. Common gfix Options

In the following discussion, I use the full parameter names in all examples. This is
not necessary as each command can be abbreviated. When the command is shown
with ‘[’ and ‘]’ in the name — the gfix -? output uses parentheses instead — then
these are the optional characters. Note that contrary to this manual, the usage
instruction uses parentheses (‘(’ and ‘)’) to mark this.

For example, the command -validate is shown as -v[alidate], and so can be
specified as -v, -va, -val, and so on up to the full -validate variant.

For almost all options in the following sections, one or two of the above commandline options will
be required. These are -user and -pa[ssword], or -tru[sted]. Optionally combined with -role. These
can be supplied for every command as parameters on the commandline, or can be configured once
in a pair of environment variables.

3.1. -?
Displays the commandline options and switches.

The -? switch was introduced in Firebird 2.5, but older versions will also display
the usage (together with an error) when an invalid switch is provided.

3.2. -PAR[ALLEL]
Number of parallel workers to use during sweep or fix ICU operation.

Syntax

-PAR[ALLEL] worker-count

If not specified, the value of ParallelWorkers of firebird.conf is used.

This option is only valid for the -SW[EEP] and -ICU commands. Attempts to specify it for other
commands results in an error “incompatible switch combination” followed by the usage options.

MaxParallelWorkers can limit the number of parallel workers to a value lower than
specified.

 Introduced in Firebird 5.0

3.3. -FE[TCH_PASSWORD]
Fetch password from file (or standard input).

Chapter 3. Common gfix Options

5

Syntax

-FE[TCH_PASSWORD] { password-filename | stdin | /dev/tty }

This switch causes the password for the appropriate user to be read from a file as opposed to being
specified on the command line. The filename supplied must be readable by the user running gfix. If
the filename is specified as stdin, then the user will be prompted for a password. On POSIX systems,
the filename /dev/tty will also result in a prompt for the password.

 Introduced in Firebird 2.5.

3.4. -USER
Username for authentication.

Syntax

-USER username

Accepts the username of the SYSDBA user, user with RDB$ADMIN role, the USE_GFIX_UTILITY system
privilege, or the owner of the database. This need not be supplied if the ISC_USER environment
variable has been defined and has the correct value.

3.5. -PA[SSWORD]
Password for authentication.

Syntax

-PA[SSWORD] password

Supplies the password for the username specified by -USER. This need not be supplied if the
ISC_PASSWORD environment variable has been defined and has the correct value.

3.6. -ROLE
Role name for privileges.

Syntax

-ROLE role-name

Allows the specification of the role to be used by the connecting user. For example, RDB$ADMIN, or a
role conveying the USE_GFIX_UTILITY system privilege.

 Introduced in Firebird 3.0.

Chapter 3. Common gfix Options

6

3.7. -TRU[STED]
Use Windows trusted authentication (Win_Sspi).

 Introduced in Firebird 3.0.

3.8. -Z
Prints version number.

The -z option to gfix prints out the version of the Firebird utility software that you are running. It
takes no parameters as the following example (running on Linux) shows.

linux> gfix -z
gfix version LI-V2.0.0.12748 Firebird 2.0

This option can be combined with other commands.

3.9. More on Authentication
Instead of using -USER and -PA[SSWORD], or -TRU[STED] option, you can also specify two environment
variables, ISC_USER and ISC_PASSWORD.

To define the username and password as environment variables on a Linux system:

linux> export ISC_USER=sysdba
linux> export ISC_PASSWORD=masterkey

Alternatively, on Windows:

C:\> set ISC_USER=sysdba
C:\> set ISC_PASSWORD=masterkey

Setting these environment variables can be insecure as it allows anyone who can
access your session the ability to perform DBA functions that you might not want
to allow.

If you have not defined the ISC_USER and ISC_PASSWORD environment variables, some commands will
not work unless you supply -user and -pa[ssword], or -tru[sted] on the command line. For
example:

> gfix -validate my_employee
Unable to perform operation

Chapter 3. Common gfix Options

7

-System privilege USE_GFIX_UTILITY is missing

The exact error depends on the Firebird version and platform.

For example, older version on Linux may also report “Unable to perform
operation. You must be either SYSDBA or owner of the database”, or — on
Windows --- “Your user name and password are not defined. Ask your database
administrator to set up a Firebird login.”.

However, passing the username and password works:

> gfix -validate my_employee -user sysdba -password masterkey

You will notice that some commands do not give any output at all. In general, gfix only reports
something when problems are encountered. Always check the response code returned by gfix to be
sure that it worked. Some commands may log informational messages in firebird.log of the server.
However, see the caveats section below for details because it looks like the response code is always
zero — at least up until Firebird 2.0.

When logging into a database on a remote server, you are always required to pass
the -user and -pa[ssword], or -tru[sted] parameters.

Chapter 3. Common gfix Options

8

Chapter 4. Shadow Files
A shadow file is an additional copy of the primary database file(s). More than one shadow file may
exist for any given database and these may be activated and de-activated at will using the gfix
utility.

The following descriptions of activating and de-activating shadow files assume that a shadow file
already exists for the database. To this end, a shadow was created as follows:

linux> isql my_employee;
SQL> create shadow 1 manual '/home/norman/firebird/shadow/my_employee.shd1';
SQL> create shadow 2 manual '/home/norman/firebird/shadow/my_employee.shd2';
SQL> commit;
SQL> show database;
Database: my_employee
 Owner: SYSDBA
 Shadow 1: "/home/norman/firebird/shadow/my_employee.shd1" manual
 Shadow 2: "/home/norman/firebird/shadow/my_employee.shd2" manual
...
SQL> quit;

It can be seen that the database now has two separate shadow files created, but as they are manual,
they have not been activated. We can see that shadows are in use if we use gstat as follows:

linux> gstat -header my_employee | grep -i shadow
Shadow count 2

Sometimes, it takes gstat a while to figure out that there are shadow files for the
database.

 Shadow file details can be found in the RDB$FILES table within the database.

Shadow files are essentially local copies of the database that can be used for
recovery or fallback if the primary database file is somehow lost or corrupted.

However, since Firebird 4.0, Firebird also has built-in replication, allowing you to
replicate the database to — for example — a remote Firebird server. Consider
whether you need shadows, or if it is better for your use-case to use replication.

4.1. Activating Shadows
The command to activate a database shadow is:

gfix -ac[tivate_shadow] shadow_file_name

Chapter 4. Shadow Files

9

 Before Firebird 3, the command line switch was -ac[tivate].

This makes the shadow file the new database file, and users can process data as normal and
without loss.

In the event that your main database file(s) become corrupted or unreadable, the DBA can activate
a shadow file. Once activated, the file is no longer a shadow file, and a new one should be created to
replace it. Additionally, the shadow file should be renamed (at the operating system prompt) to the
name of the old database file that it replaces.

It should be noted that activating a shadow while the database itself is active can
lead to corruption of the shadow. Make sure the database file is really unavailable
before activating a shadow.

Once a shadow file has been activated, you can see the fact that there are active shadows in the
output from gstat:

linux> gstat -header my_employee | grep -i shadow
Shadow count 2
Attributes active shadow, multi-user maintenance

The DBA can set up the database to automatically create a new shadow file in the
event of a current shadow being activated. This allows a continuous supply of
shadow files and prevents the database ever running without one.

4.2. Killing Shadows
The command to kill all unavailable database shadows, for a specific database, is:

gfix -k[ill_shadow] database_name

 Before Firebird 3, the command line switch was -k[ill].

In the event that a database running with shadow files loses a shadow, or a shadow becomes
unusable for some reason, the database will stop accepting new connections until such time as the
DBA kills the faulty shadow and, ideally, creates a new shadow to replace the broken one.

The following (contrived) example, shows what happens when the database loses a shadow file,
and an attempt is made to connect to that database. There are two sessions in the following
example, one is connected to the database while the second deletes a shadow file and then tries to
connect to the database. The command line prompts shows which of the two sessions we are using
at the time.

First, the initial session is connected to the database and can see that there are two shadow files
attached:

Chapter 4. Shadow Files

10

linux_1>isql my_employee
Database: my_employee
SQL> show database;
Database: my_employee
 Owner: SYSDBA
Shadow 1: "/home/norman/firebird/shadow/my_employee.shd1" manual
Shadow 2: "/home/norman/firebird/shadow/my_employee.shd2" manual
 ...

In the second session, we delete one of the shadow files, and then try to connect to the database

linux_2> rm /home/norman/firebird/shadow/my_employee.shd2
linux_2> isql_my_employee
Statement failed, SQLCODE = -901
lock conflict on no wait transaction
-I/O error for file "/home/norman/firebird/shadow/my_employee.shd2"
-Error while trying to open file
-No such file or directory
-a file in manual shadow 2 in unavailable
Use CONNECT or CREATE DATABASE to specify a database
SQL> quit;

The second session cannot connect to the database until the problem is fixed. The DBA would use
the gfix -k[ill_shadow] command to remove details of the problematic shadow file from the
database and once completed, the second (and subsequent) sessions would be able to connect.

linux_2> gfix -kill_shadow my_employee

linux_2> isql my_employee
Database: my_employee
SQL> show database;
Database: my_employee
 Owner: SYSDBA
Shadow 1: "/home/norman/firebird/shadow/my_employee.shd1" manual
...

The database now has a single shadow file where before it had two. It is noted, however, that gstat
still shows the database as having two shadows, even when one has been removed.

linux> gstat -header my_employee | grep -i shadow
Shadow count 2
Attributes active shadow, multi-user maintenance

In addition to the above strange result, if I subsequently DROP SHADOW 1 and COMMIT,
to remove the remaining shadow file, gstat now shows that the shadow count has

Chapter 4. Shadow Files

11

gone up to three when it should have gone down to zero!

Chapter 4. Shadow Files

12

Chapter 5. Set Database Page Buffers
The database cache (or page buffer) is an area of RAM allocated to store (cache) database pages in
memory to help improve the efficiency of the database performance. It is far quicker to read data
from memory than to physically read the data from disk.

The size of the database cache depends on the database page size and the number of buffers
allocated, a buffer is the same size as a database page, and whether the installation is using
Classic/SuperClassic or SuperServer versions of Firebird.

In a Classic and SuperClassic installation, by default, each connection to the database gets its own
relatively small cache of 256 pages (was 75 before Firebird 3.0) while Superserver creates a much
larger cache of 2048 pages which is shared between all the connections.

Usually, the page buffers value is set as parameter DefaultDbCachePages in firebird.conf (and, in
databases.conf since Firebird 3.0), but it can be set directly in the database header using gfix (and
this setting will override firebird.conf and databases.conf, so be careful). For Classic and
SuperClassic, connections can also override the page buffer size for a specific connection by
specifying the isc_dpb_num_buffers property in the DPB.

The command to set the number of cache pages is:

gfix -b[uffers] BUFFERS database_name

This command allows you to change the number of buffers (pages) allocated in RAM to create the
database cache.

You cannot change the database page size in this manner, only the number of pages cached in RAM.

One parameter is required which must be numeric and between 50 (the minimum) and 2147483646
(the maximum since Firebird 2.5, before it was 131072).

Please don’t consider page buffers value as an ultimate parameter to improve
Firebird’s performance, and don’t set it too high without clear understanding what
are you doing.

The setting applies only to the database you specify. No other databases running on the same server
are affected.

For SuperServer, the new value of page buffers will be allocated at the first connection to the
database.

There is a difference in behaviour between Firebird architectures: for SuperServer, if the number
of page buffers was changed while the database had active connection, the old value will be used
until all connections disconnect; for Classic/SuperClassic, new connections will use the new value of
page buffers immediately after the change.

The following example shows the use of gstat to read the current number of buffers, the gfix utility

Chapter 5. Set Database Page Buffers

13

being used to set the buffers to 4,000 pages and gstat being used to confirm the setting. The value of
zero for page buffers indicates the default setting for the server type is in use.

You can use the gstat command line utility to display the database details with the
command line: gstat -header db_name however, to run gstat, you need to be logged
into the server — it cannot be used remotely.

linux> gstat -header my_employee | grep -i "page buffers"
Page buffers 0

linux> gfix -buffers 4000 my_employee

linux> gstat -header my_employee | grep -i "page buffers"
Page buffers 4000

Chapter 5. Set Database Page Buffers

14

Chapter 6. Limbo Transaction Management
Limbo transactions can occur when an application is updating two (or more) databases at the same
time, in the same transaction, or otherwise uses two-phase commit. At COMMIT time, Firebird will
prepare each database for the COMMIT and then COMMIT each database separately.

In the event of a network outage, for example, it is possible for part of the transaction to have been
committed on one database but the data on the other database(s) may not have been committed.
Because Firebird cannot tell if these transactions (technically sub-transactions) should be
committed or rolled back, they are flagged as being in limbo.

Gfix offers a number of commands to allow the management of these limbo transactions.

The following examples of limbo transactions are based on Firebird 1.5 and have
kindly been provided by Paul Vinkenoog. Because of the limitation of my setup, I
am unable to create limbo transactions in my current location.

In the spirit of consistency, however, I have renamed Paul’s servers and database
locations to match the remainder of this document.

6.1. Listing Limbo Transactions
The gfix command -l[ist] displays details of transactions that are in limbo. If there is no output,
then there are no transactions in limbo and no further work is needed. The command is:

gfix -l[ist] database_name

An example of listing limbo transactions is shown below. This command is run against the local
database on the server named linux where a multi-database transaction had been run connected to
databases linux@my_employee and remote:testlimbo. Both of these database names are aliases.

linux> gfix -list my_employee
Transaction 67 is in limbo.
 Multidatabase transaction:
 Host Site: linux
 Transaction 67
has been prepared.
 Remote Site: remote
 Database path: /opt/firebird/examples/testlimbo.fdb

If the command is run against the remote database then nothing will be listed because that
database does not have any limbo transactions — the transaction that went into limbo, when the
network failed, for example, was initiated on the local database.

You may also supply the -pr[ompt] option to the command, and you will be prompted to COMMIT or
ROLLBACK each detected limbo transaction. In this case, the command would be:

Chapter 6. Limbo Transaction Management

15

gfix -l[ist] -pr[ompt] database_name

An example of this is shown below.

linux> gfix -list -prompt my_employee
Transaction 67 is in limbo.
 Multidatabase transaction:
 Host Site: linux
 Transaction 67
has been prepared.
 Remote Site: remote
 Database path: /opt/firebird/examples/testlimbo.fdb
Commit, rollback or neither (c, r, or n)?

6.2. Committing Or Rolling Back
When a limbo transaction has been detected, the DBA has the option of committing or rolling back
one or more of the transactions reported as being in limbo.

When more than one transaction is listed, the DBA can either commit or roll back all transactions in
limbo, or only a specific transaction number.

The following commands show the -co[mmit] option being used, but the -r[ollback] option applies
as well, it all depends on what the DBA is trying to achieve.

To commit every limbo transaction on the database, the following command would be used:

gfix -co[mmit] all database_name

If the DBA wants to commit a single transaction, then the command would change to the following:

gfix -co[mmit] TXN database_name

Where TXN is the transaction number to be committed.

When either of these options are used, there is no feedback from gfix to advise you that the commit
actually worked. You would need to rerun the gfix -list command to make sure that all, or the
selected, limbo transactions are indeed gone.

You cannot commit or rollback a transaction that is not in limbo. If you try, the following will occur:

linux> gfix -commit 388 my_employee
failed to reconnect to a transaction in database my_employee
transaction is not in limbo
-transaction 388 is active

Chapter 6. Limbo Transaction Management

16

unknown ISC error 0

When committing or rolling back all limbo transactions, the -pr[ompt] option can be specified. It is,
however, not permitted when processing a single transaction. An example of using the -pr[ompt]
option has been shown above under listing limbo transactions.

6.3. Automatic Two-phase Recovery
Gfix can be used to perform automatic two-phase recovery. The command for this is -tw[o_phase]
and, like -co[mmit] and -r[ollback] above, requires either all or a transaction number.

The output of the -l[ist] command shows what will happen to each listed transaction in the event
that the DBA runs the -tw[o_phase] command.

The command also takes the -pr[ompt] option, as above, when used to process all transaction.

The command line to carry out automatic two-phase recovery is:

gfix -tw[o_phase] TXN database_name

or

gfix -tw[o_phase] all database_name

As above, TXN is a single transaction number from the list of limbo transactions.

Paul has noted that when using the -co[mmit], -r[ollback] or -tw[o_phase] options,
the output is the same and appears to show that these three are all just synonyms
for the -l[ist] -pr[ompt] pair of options. This occurred whether Paul used the
transaction number, 67, or all in the command line.

Chapter 6. Limbo Transaction Management

17

Chapter 7. Changing The Database Mode
Databases can be set to run in one of two modes, read-only — where no updates are permitted, and
read/write — where both reading and writing of data is permitted. By default, Firebird creates
read/write databases and as such, all read/write databases must be placed on a file system which
allows writing to take place.

Should you wish to put a Firebird database on a read-only medium, for example a CD or DVD, you
wouldn’t be able to do so. After a new database has been populated with data it can be changed to
read-only mode, and then used on a CD (or other read-only file systems) with no problems.

Firebird uses SQL internally to maintain its internal structures with details about
transactions, for example, and this is the reason that a database must be placed on
a read/write file system regardless of whether only SELECT statements are run or
not.

 Only databases in dialect 3 can be changed to read-only mode.

The command to set the required mode for a database is:

gfix -mo[de] MODE database_name

The command takes two parameters, the MODE which must be one of the following:

read_only the database cannot be written to.

read_write the database can be written to.

The meaning of the two modes should be quite meaningful.

The second parameter is a database name to apply the mode change to.

This option should not be confused with the replica mode configured through -
REPL[ICA]. For example, a database set to -REPLICA READ_ONLY is still writable by the
replicator connection, while a database set to -MODE READ_ONLY is not writable at all.

The following example shows how to put a database into read-only mode, and then change it back
again. The example also shows what happens when you try to update the database while running
in read-only mode.

linux> gfix -mode read_only my_employee

linux> isql my_employee
Database: my_employee

SQL> create table test(stuff integer);
Statement failed, SQLCODE = -902

Chapter 7. Changing The Database Mode

18

Dynamic SQL Error
-attempted update on read-only database

SQL> quit;

linux> gfix -mode read_write my_employee

linux> isql my_employee
Database: my_employee

SQL> create table test(stuff integer);

SQL> show table test;
STUFF INTEGER Nullable

SQL> quit;

If there are any connections to the database in read/write mode when you attempt to convert the
database to read-only, the attempt will fail as shown below with Firebird 1.5.

linux> gfix -mode read_only my_employee
lock time-out on wait transaction
-lock time-out on wait transaction
-object my_employee is in use

linux> echo $?
0

As with many failures of gfix, the response code returned to the operating system
is zero.

Under Firebird 2, the error message is more self-explanatory:

linux> gfix -mode read_only my_employee
lock time-out on wait transaction
-object /opt/firebird/databases/my_employee.fdb is in use

linux> echo $?
0

Chapter 7. Changing The Database Mode

19

Chapter 8. Setting The Database Dialect
The dialect of the database is simply a term that defines the specific features of the SQL language
that are available when accessing that database. There are three dialects at present (upto and
including Firebird 5.0), these are:

• Dialect 1 stores date and time information in a DATE data type and has a TIMESTAMP data type
which is identical to DATE. Double quotes are used to delimit string data. The precision for
NUMERIC and DECIMAL data types is less than a dialect 3 database and if the precision is greater
than 9, Firebird stores these as DOUBLE PRECISION. BIGINT is not permitted as a data type.

 Dialect 1 is deprecated and may be removed in a future version.

• Dialect 2 is available only on the Firebird client connection and cannot be set in the database. It
is intended to assist debugging of possible problems with legacy data when migrating a
database from dialect 1 to 3. This dialect cannot be set for a database using gfix. (See below.)

 Dialect 2 is deprecated and maybe removed in future version

• Dialect 3 databases allow numbers (DECIMAL and NUMERIC data types) to be stored as BIGINT when
the precision is greater than 9. The TIME data type exists, and stores time data only. The
TIMESTAMP data type exists, and stores date and time. The DATE data type only stored the date.
Double quotes can be used but only for identifiers that are case dependent, not for string data
which has to use single quotes.

The command to change the SQL dialect for a database is:

gfix -sq[l_dialect] DIALECT database_name

The DIALECT parameter is simply 1 or 3.

Simply changing the SQL dialect of the database is usually not sufficient to migrate
a database from dialect 1 to dialect 3. The migration is usually more involved,
requiring changes to stored procedures and triggers, and in your application code.
It might even be advisable to create a new database and pump the data — with
appropriate transformations — from the old dialect 1 database to the new dialect 3
database.

For more information, consult the Interbase 6 Getting Started manual, chapter
Migrating databases to dialect 3 starting on page 37. This manual is available from
the Reference Manuals sections on the Firebird site, near the bottom under
InterBase 6.0 Manuals in the ZIP-file at Full Set, cross-indexed.

The following example changes a database to use dialect 3 which will allow many newer features of
SQL 92 to be used.

Chapter 8. Setting The Database Dialect

20

https://firebirdsql.org/en/reference-manuals/

linux> gfix -sql_dialect 3 my_employee

linux> gstat -header my_employee | grep dialect
Database dialect 3

linux> gfix -sql_dialect 1 my_employee

linux> gstat -header my_employee | grep dialect
Database dialect 1

Because you cannot use gstat remotely, you may also use the isql command SHOW SQL DIALECT from
a remote location to see which dialect your client and database are using, as follows:

remote> isql my_employee -user norman -password whatever
Database: my_employee

SQL> show sql dialect;
Client SQL dialect is set to: 3 and database SQL dialect is: 3

Although dialect 2 is possible on the client, trying to set a dialect of 2 will fail on the server as the
following example shows.

linux> gfix -sql_dialect 2 my_employee
Database dialect 2 is not a valid dialect.
-Valid database dialects are 1 and 3.
-Database dialect not changed.

To set dialect 2 for your client connection, you use isql as follows:

linux> isql my_employee
Database: my_employee

SQL> set sql dialect 2;
WARNING: Client SQL dialect has been set to 2 when connecting -
to Database SQL dialect 3 database.

SQL> show sql dialect;
Client SQL dialect is set to: 2 and database SQL dialect is: 3

The WARNING line above has had to be split to fit on the page of the PDF version
of this manual. In reality, it is a single line of text.

Chapter 8. Setting The Database Dialect

21

Chapter 9. Database Housekeeping And
Garbage Collection

9.1. Garbage
Garbage, for want of a better name, is the detritus that Firebird leaves around in the database, from
record updates and deletes.

Almost all garbage is created by committed transactions. Since around Firebird 2.5, most
transactions that roll back are cleaned up immediately — assuming that Firebird is still running. In
older versions, rollbacks were an additional cause for garbage.

The major cause of garbage build-up is long-running transactions that require Firebird to keep old
versions of records that are frequently updated. Another source of garbage is an application
strategy that deletes records and never revisits them.

What actually happens on delete is that Firebird stores a “deleted stub” with the full record as a
back version. Until the deletion is mature — meaning that all active transactions started after the
delete was committed — the old version must be preserved.

Imagine a table that’s indexed and accessed by date. On some schedule, records age out and are
deleted. In the application, records are accessed by date, and the deleted records are so old, no
query ever asks for them. So there they sit, taking up space and doing no good to anyone. Even with
a garbage collect thread, some active transaction has to stumble over deleted records or records
with unneeded back versions before the record will be garbage collected.

In cooperative garbage collection, that particular record will be cleaned up immediately (or at least
when the transaction gets some cycles). The dedicated garbage collection thread should clean up all
the records on a page, but not until an active transaction tells it that there’s a page that needs
cleaning.

Because Firebird uses multi-generational architecture, every time a row is updated or deleted,
Firebird keeps a copy of the previous version in the database. These copies use space in the data
pages and can remain in the database for some time, especially if there are no active transactions
stumbling across them!

There are a number of causes of garbage:

• Remnants from a committed transaction. This is the main cause of garbage since around
Firebird version 2.5.

• Remnants from an aborted (rolled back) transaction may exist in Firebird versions prior to 2.5.
Newer versions will usually perform immediate clean up after a rollback, unless a very large
number of records were updated, or the transaction was started with the NO AUTO UNDO option.
Also, if the Firebird Server, the operating system, or the physical server crashed, then these
remnants may still exist, even in later versions of Firebird.

• Applications, described above, which delete database records, but then, subsequently, never
revisit those deleted versions to garbage collect them automatically.

Chapter 9. Database Housekeeping And Garbage Collection

22

With regard to the remnants from aborted or rolled back transactions, Firebird (now) carries out
record-keeping to facilitate save points. This housekeeping allows Firebird to identify and, if
necessary, undo all changes made by a transaction in the event that it is rolled back, or which failed
due to a lost connection.

If a failed transaction is rolled back in either manner, its state is set to committed as there are no
differences between a failed transaction and one in which it committed after making no changes.

These remnants are simply older copies of the rows that were being updated by the respective
transactions. The differences are that:

• Whenever a subsequent transaction reaches garbage from a committed transaction, that
garbage is automatically cleared out, but see above for reasons where this may not take place
often enough.

• Rolled back garbage looks just like record versions created by active transactions. Those records
can be accessed either sequentially (during a full table scan) or by index — assuming that the
index entry was made before the crash that left the garbage around. The index entries will exist
in the case of all but the last change made. When one transaction reads a record version created
by a transaction that’s listed in the transaction bit vector as active, the reader attempts to get a
lock on the apparently active transaction id. If the lock request succeeds, then the other
transaction is dead and the reader will either clean up the mess or notify the garbage collect
thread to do so.

Firebird will occasionally — depending on the sweep interval — automatically sweep through the
database and remove the remnants of rolled back transactions and this has two effects:

• The space recovered is made available for reuse by the same table, however, if this results in
the page becoming completely empty, then it can be used for any purpose within the database.

• The performance of the database may be affected while the sweep is in progress.

Theoretically, it is possible to clear out old rolled back transactions' garbage with a
database backup using gbak (as long as the -garbage_collect options is not
specified). Gbak reads every table sequentially and thus visits every row in every
table. Applications which also visit every row in one or more tables, will also cause
the garbage in those tables to be collected. Neither will affect the database’s OIT
(Oldest Intersting Transaction) or OST (Oldest Snapshot) settings, however.

In practice, better do not consider backup as an alternative for sweep, because
sweep does more things than collective garbage collection.

In the SuperServer version of Firebird 2.0, garbage collection has been vastly improved. There are
now three different ways of operation and these are configurable by setting the GCPolicy setting in
the firebird.conf configuration file. By default, SuperServer uses combined while Classic Server
uses cooperative. The other option is background.

 Classic Server ignores the setting and always uses cooperative garbage collection.

Chapter 9. Database Housekeeping And Garbage Collection

23

9.1.1. Record Versions

Normally, when a “back” or old version of a row in a table is created, it will be stored on the same
page as the newest version. This is usually fine as the back version is not normally a complete copy
of the old version, merely a list of differences from the newest version. Enough information is
retained in the old version, to be able to recreate it, if necessary.

If the database is suffering from a lack of garbage collection, either deliberately, or down to the
application design, then it is possible that there will be a build up of enough back versions to fill the
target page. When the chain of old versions gets too big, Firebird has to move the old versions to a
different page which, if it occurs as part of an UPDATE statement, as it normally will, the UPDATE will
run a lot slower than usual and will greatly increase the cost of subsequent garbage collection
against that table.

9.1.2. Cooperative Garbage Collection

This is the default setting, indeed the only setting, that Classic Server uses. In this mode, the normal
operation — as described above — takes place. When a full scan is performed (perhaps during a
backup) old versions of the rows are deleted at that point in time. Record versions which are old
enough that no active transactions have any interest in them will be removed, as will any versions
created by failed transactions, if there are any present. (Which there shouldn’t be!)

9.1.3. Background garbage Collection

SuperServer has, even since before version 1.0, performed background garbage collection where
the server informs the garbage collector about old versions of updated and deleted rows when they
are ready to be cleaned up. This helps avoid the need to force a full scan of each record in the
database tables to get the garbage collector to remove these old versions. An active transaction has
to recognize the need for garbage collection and notify the server which puts that record id on a list
for the garbage collect thread. So, an unvisited record will not attract the garbage collector unless
another record on that page is read and does need cleanup.

When all rows in a table are read by the server, any old record versions are flagged to the garbage
collector as being ready to be cleared out. They are not deleted by the scanning process as in the
cooperative method. The garbage collector runs as a separate background thread, and it will, at
some point, remove these older record versions from the database.

9.1.4. Combined Garbage Collection

This is the default garbage collection method for SuperServer installations. In this mode, both the
above methods are used together.

9.2. Setting Sweep Interval
The default sweep interval for a new database is 20,000. The sweep interval is the difference
between the Oldest Snapshot Transaction, or OST and the Oldest Interesting Transaction or OIT.

 This doesn’t mean that every 20,000 transaction a sweep will take place. It will take

Chapter 9. Database Housekeeping And Garbage Collection

24

place when the difference between the OST and the OIT is greater than the sweep
interval.

An interesting transaction is one which has not yet committed. It may be still active, in limbo or
may have been rolled back. (Limbo transactions are never garbage collected.)

The sweep facility runs through the database and gets rid of old rows in tables that are out of date.
This prevents the database from growing too big and helps reduce the time it takes to start a new
transaction on the database.

If you find that starting a new transaction takes a long time, it may be a good idea
to run a manual sweep of the database in case the need for a sweep is causing the
hold-up.

You can check if a manual sweep may be required by running the gstat utility to check the
database header page and extract the Oldest Transaction (OIT) and Oldest Snapshot (OST) numbers
from the output. If OST - OIT is small (less than the sweep interval) then a manual sweep may be in
order. The SHOW DATABASE command in isql will also show the details you need.

Alternatively, another idea is to run gstat with the switches set to show old record versions. If that
shows a problem, then it may be a good idea to start looking for long-running transactions.

The options for this are:

gstat database -r[ecord]
gstat database -d[ata] -r[ecord]
gstat database -r[ecord] -t[able] table_names

For example:

tux> gstat test.fdb -r -t NORMAN

...
Analyzing database pages ...
NORMAN (142)
 Primary pointer page: 268, Index root page: 269
 Average record length: 0.00, total records: 15
 Average version length: 9.00, total versions: 15, max versions: 1
 Data pages: 1, data page slots: 1, average fill: 16%
...

The information is shown in the “record versions” statistic. In this example, there are 15 versions
and as the “total records” is also 15, then all the records have been deleted and need garbage
collecting.

A manual sweep can be run by using the - sw[eep] command. (See below).

To alter the database’s automatic sweep interval, use the following command:

Chapter 9. Database Housekeeping And Garbage Collection

25

gfix -h[ousekeeping] INTERVAL database_name

The INTERVAL parameter is the new value for the sweep interval. The database name parameter is
the database upon which you wish to alter the setting for automatic sweeping. The following
example shows the setting being changed from the default to a new value of 1,000.

linux> gfix -h 1000 my_employee

linux> gstat -header my_employee | grep Sweep
Sweep interval: 1000

9.3. Manual Garbage Collection
If automatic sweeping has been turned off, or only runs rarely because of the sweep interval
setting, the DBA can manually force a sweep to be performed. The command to carry out this task
is:

gfix -sw[eep] [-i[gnore]] [-par[allel] n] database_name

This command will force the garbage left over from old rolled back transactions to be removed,
reducing the database size and improving the performance of new transactions. Rolled back
transactions are less of a problem than old versions from committed transactions, however, when
the newest versions is being used by all current and future active transactions.

The -i[gnore] option may be supplied. This forces Firebird to ignore checksum errors on database
pages. This is not a good idea and should rarely need to be used, however, if your database has
suffered some problems it might be necessary to use it.

Checksums have not been used for a number of years as it was found that a
significant percentage of CPU was consumed by check summing to find partial
page writes — none of which were ever found!

The following example shows a manual database sweep being implemented:

linux> gfix -sweep my_employee

Since Firebird 5.0, the -sw[eep] command can be combined with -PAR[ALLEL] to specify the number
of parallel workers for sweeping.

9.4. Disabling Automatic Sweeping
If you set the sweep interval to zero then automatic sweeping will be disabled. This implies that
there will be no automatic housekeeping done, so your database performance will not suffer as a

Chapter 9. Database Housekeeping And Garbage Collection

26

result of the processing requirements of the automatic sweep.

If you disable sweeping, you are advised to run a manual sweep at regular intervals, for example
when the database is under light or no load. Alternatively, simply make sure you take regular
backups of the database and as this is something you should be doing anyway, it shouldn’t be a
problem.

Chapter 9. Database Housekeeping And Garbage Collection

27

Chapter 10. Database Startup and Shutdown

The first part of this section describes the shutdown and startup options up to
Firebird 2.0. There is a separate section at the end which discusses the new states
for starting and stopping a database using Firebird 2.0 onwards.

10.1. Database Shutdown
If there is maintenance work required on a database, you may wish to close down that database
under certain circumstances. This is different from stopping the Firebird server as the server may
well be running other databases which you do not wish to affect.

The command to close a database is:

gfix -sh[utdown] OPTION TIMEOUT database_name

 Before Firebird 3, the command line switch was -shut.

The TIMEOUT parameter is the time, in seconds, that the shutdown must complete in. If the
command cannot complete in the specified time, the shutdown is aborted. There are various
reasons why the shutdown may not complete in the given time, and these vary with the mode of the
shutdown and are described below.

The OPTION parameter is one of the following:

-at[tach] prevents new connections.

-tr[an] prevents new transactions.

-fo[rce_shutdown] simply aborts all connections and transactions.

Before Firebird 3, the command line switch was -
f[orce].

When a database is closed, the SYSDBA or the database owner can still connect to perform
maintenance operations or even query and update the database tables.

If you specify a long time for the shutdown command to complete in, you can
abort the shutdown by using the -o[nline] command (see below) if the timeout
period has not completed.

10.1.1. Preventing New Connections

-at[tach] prevents any new connections to the database from being made with the exception of the
SYSDBA and the database owner. The shutdown will fail if there are any sessions connected after
the timeout period has expired. It makes no difference if those connected sessions belong to the

Chapter 10. Database Startup and Shutdown

28

SYSDBA, the database owner or any other user. Any connections remaining will terminate the
shutdown with the following details:

linux> gfix -shut -attach 5 my_employee
lock conflick on no wait transaction
-database shutdown unsuccessful

Anyone other than the SYSDBA or database owner, attempting to connect to the database will see
the following:

linux> isql my_employee -user norman -password whatever
Statement failed, SQLCODE = -901
database my_employee shutdown
Use CONNECT or CREATE DATABASE to specify a database
SQL>

Connections in the database will still be able to start new transactions or complete old ones.

10.1.2. Preventing New Transactions

-tr[an] prevents any new transactions from being started and also prevents new connections to the
database. If there are any active transactions after the timeout period has expired, then the
shutdown will fail as follows:

linux> gfix -shut -tran 5 my_employee
lock conflick on no wait transaction
-database shutdown unsuccessful

If any user connected to the database being shutdown with the -tr[an] tries to start a new
transaction during the shutdown timeout period, the following will result:

SQL> select * from test;
Statement failed, SQLCODE = -902
database /home/norman/firebird/my_employee.fdb shutdown in progress
Statement failed, SQLCODE = -902
database /home/norman/firebird/my_employee.fdb shutdown in progress
Statement failed, SQLCODE = -901
Dynamic SQL Error
-SQL error code = -901
-invalid transaction handle (expecting explicit transaction start)

10.1.3. Force Closure

-fo[rce_shutdown] shuts down with no regard for the connection or transaction status of the
database. No new connections or transactions are permitted and any active sessions are terminated

Chapter 10. Database Startup and Shutdown

29

along with any active transactions.

Anyone other than SYSDBA or the database owner trying to connect to the database during the
timeout period will not be able to connect successfully or start any (new) transactions.

Be nice to your users, use the -fo[rce_shutdown] option with great care.

There is a bug in Classic Server which still exists at version 2.0. The bug is such
that the -f[orce] option behaves in the same as the -at[tach] option.

10.2. Starting a Database
Once all maintenance work required on a database has been carried out, you need to restart the
database to allow normal use again. (See shutdown option above for details of closing a database.)

The -o[nline] command allows a database to be restarted. It takes a single parameter which is the
database name as follows:

gfix -o[nline] database_name

The following example shows a closed database being started.

linux> gfix -online my_employee

10.3. New Startup and Shutdown States in Firebird 2.0
The above discussion of stopping and starting a database apply to all versions of the server up to
version 2.0. From 2.0 the commands will work as described above, but a new state has been added
to define exactly how the database is to be stopped or started. The commands change from those
described above to the following:

gfix -sh[utdown] [STATE] OPTION TIMEOUT database_name

gfix -o[nline] [STATE] database_name

STATE is new in Firebird 2.0 and is one of the following:

normal

This is the default state for bringing the database online. It allows connections from any
authorised users — not just SYSDBA or the database owner. This option is not accepted for
shutdown operations.

multi

This is the default mode for shutdown, as described above. When the database is shutdown as
above, or using the multi state, then unlimited connections can be made by the SYSDBA or the

Chapter 10. Database Startup and Shutdown

30

database owner. No other connections are allowed.

single

Similar to the multi option above, but only one SYSDBA or database owner connection is
allowed.

full

Shutdown and don’t allow any connections from anyone, even SYSDBA or the database owner.
This is not an acceptable option for bringing a database online.

There is no leading dash for the state parameters, unlike the command itself and
the -shut OPTION.

There is a hierarchy of states for a database. The above list shows them in order with normal at the
top and full at the bottom.

This hierarchy is important, you cannot shut down a database to a higher or equal level that it
currently is, nor can you bring a database online to a lower or equal level.

If you need to identify which level a database is currently running at, gstat -header will supply the
answers. The following example puts a database fully online then progressively shuts it down to
fully offline. At each stage, gstat is run to extract the Attributes of the database.

linux> gfix -online normal my_employee
linux> gstat -header my_employee | grep Attributes

 Attributes

linux> gfix -shut multi -attach 0 my_employee
linux> gstat -header my_employee | grep Attributes

 Attributes multi-user maintenance

linux> gfix -shut single -attach 0 my_employee
linux> gstat -header my_employee | grep Attributes

 Attributes single-user maintenance

linux> gfix -shut full -attach 0 my_employee
linux> gstat -header my_employee | grep Attributes

 Attributes full shutdown

linux>

10.4. Shutdown Cache Manager
When the help page for gfix is displayed there is a message in the output for the -ca[che] option

Chapter 10. Database Startup and Shutdown

31

which states:

...
-ca[che] shutdown cache manager
...

In theory, this option can be combined with -shutdown, but as Firebird doesn’t have a cache
manager, in practice it will actually do nothing.

This has been reported as issue #8010, and hopefully it will be removed in a future Firebird
version.

Chapter 10. Database Startup and Shutdown

32

https://github.com/FirebirdSQL/firebird/issues/8010

Chapter 11. Database Page Space Utilisation
Firebird reserves some space on the data page for the possible future updates or deletes of records
on this page, to reduce possible fragmentation. The amount of reserved space can be approximately
considered as a number of records, multiplied by the record header size. Therefore, for many very
small records, this reserve can be close to 50% of data page, and for the single huge record can be
22 bytes or so (depends on the version of On-Disk Structure of the database).

If you wish to use all the available space in each database page, you may use the -u[se] command
to configure the database to do so. If you subsequently wish to return to the default behaviour, the
-u[se] command can be used to revert to leaving 20% free space per page.

Once a page has been filled to 'capacity' (80 or 100%) changing the page usage
setting will not change those pages, only subsequently written pages will be
affected.

The -u[se] command takes two parameters as follows:

gfix -u[se] USAGE database_name

The USAGE is one of:

full use 100% of the space in each database page.

reserve revert to the default behaviour and only use 80% of each page.

The following example configures a database to use all available space in each database page:

linux> gfix -use full my_employee
linux> gstat -header my_employee | grep Attributes
Attributes no reserve

The following example sets the page usage back to the default:

linux> gfix -use reserve my_employee
linux> gstat -header my_employee | grep Attributes
Attributes

If you are using full page utilisation then the Attributes show up with 'no reserve' in the text. This
doesn’t appear for normal 80% utilisation mode.

Setting a database which receives regular updates and deletes of existing records
to -use full may negatively affect performance. Use this setting with care.

Chapter 11. Database Page Space Utilisation

33

Chapter 12. Database Validation and
Recovery

12.1. Database Validation
Sometimes, databases get corrupted. Under certain circumstances, you are advised to validate the
database to check for corruption. The times you would check are:

• When an application receives a database corrupt error message.

• When a backup fails to complete without errors.

• If an application aborts rather than shutting down cleanly.

• On demand — when the SYSDBA decides to check the database.

Database validation requires that you have exclusive access to the database. To
prevent other users from accessing the database while you validate it, use the gfix
-sh[utdown] command to shut down the database.

When a database is validated, the following checks are made and corrected by default:

• Orphan pages are returned to free space. This updates the database.

• Pages that have been misallocated are reported.

• Corrupt data structures are reported.

There are options to perform further, more intensive, validation and these are discussed below.

12.1.1. Default Validation

The command to carry out default database validation is:

gfix -v[alidate] database_name

This command validates the database and makes updates to it when any orphan pages are found.
An orphan page is one which was allocated for use by a transaction that subsequently failed, for
example, when the application aborted. In this case, committed data is safe, but uncommitted data
will have been rolled back. The page appears to have been allocated for use, but is unused.

This option updates the database and fixes any corrupted structures.

12.1.2. Full Validation

By default, validation works at page level. If one needs to go deeper and validate at the record level
as well, the command to do this is:

Chapter 12. Database Validation and Recovery

34

gfix -v[alidate] -fu[ll] database_name

This option will validate, report and update at both page and record level. Any corrupted
structures, etc. will be fixed.

12.1.3. Read-only Validation

As explained above, a validation of a database will actually validate and update the database
structures to, hopefully, return the database to a working state. However, you may not want this to
happen and in this case, you can perform a read-only validation which simply reports any problem
areas and does not make any changes to the database.

To carry out a read-only validation, simply supply the -n[o_update] option to whichever command
line you are using for the validation. To perform a full validation, at record and page level, but in
reporting mode only, use the following command:

gfix -v[alidate] -fu[ll] -n[o_update] database_name

On the other hand, to stay at page level validation only, the command would be:

gfix -v[alidate] -n[o_update] database_name

12.1.4. Ignore Checksum Errors

Checksums are used to ensure that data in a page is valid. If the checksum no longer matches up,
then it is possible that a database corruption has occurred. You can run a validation against a
database, but ignore the checksums using the -i[gnore] option.

This option can be combined with the -n[o_update] option described above and applies to both full
and default validations. So, to perform a full validation and ignore checksums on a database, but
reporting errors only, use the following command:

gfix -v[alidate] -fu[ll] -i[gnore] -n[o_update] database_name

Alternatively, to carry out a page level validation, ignoring checksum errors but updating the
database structures to repair it, the command would be:

gfix -v[alidate] -i[gnore] database_name

Ignoring checksums would allow a corrupted database to be validated (unless you specify the -
n[o_update] option), but it is unlikely the recovered data would be usable, if at all, present.

Chapter 12. Database Validation and Recovery

35

12.2. Database Recovery
If the database validation described above produces no output then the database structures can be
assumed to be valid. However, in the event that errors are reported, you may have to repair the
database before it can be used again.

12.2.1. Recover a Corrupt Database

The option required to fix a corrupted database is the gfix -me[nd] command. However, it cannot
fix all problems and may result in a loss of data. It all depends on the level of corruption detected.
The command is:

gfix -me[nd] database_name

 Before Firebird 3, the command line switch was -m[end]

This causes the corruptions in data records to be ignored. While this sounds like a good thing, it is
not. Subsequent database actions (such as taking a backup) will not include the corrupted records,
leading to data loss.

12.2.2. Practical tips for databases recovery

In practice, to recover database it is necessary to use gfix and gbak tools.

First of all, before the recovery, it is necessary to create a file copy of the corrupted database file, to
be able to repeat recovery procedure with some variations.

Then, run gfix full validation command with disabled checksum validation:

gfix -v[alidate] -fu[ll] -i[gnore] database_name

After that, run mend, also with disabled checksum validation:

gfix -me[nd] -i[gnore] database_name

In case of a corruption, gfix returns the summary of errors found:

• Number of record level errors — number of corrupted records found during gfix work. These
records are not correct — essentially, lost.

• Number of index page errors — number of index pages in bad indices. When even one key is
incorrect in an index, gfix marks the whole index as bad, so the number of pages usually is
high. However, since it does not affect user data, and due to the fact that corrupted indices will
be recreated during backup/restore, this can be considered as for your information only.

• Number of transaction page errors — number of transaction pages which were fixed by gfix.
Usually if you see this message it means that gfix did its job and now transactions are OK.

Chapter 12. Database Validation and Recovery

36

• Number of BLOB errors — number of bad BLOB pages, it indicates number of bad BLOBs.

• Number of database page errors — this is the overall number of database pages, which were
visited and changed/marked as bad by gfix. Again, this is mostly for your information.

 Gfix writes detailed information about found errors to the firebird.log

After that, it is necessary to perform a backup and restore of the corrupted database using gbak:

gbak -backup -ignore database_name backup1.fbk

gbak -create backup1.fbk new_database_name

If the backup and restore with gbak completed successfully, the database is recovered.

Since Firebird 3.0, gbak tools has a very useful option: -SKIP_D[ATA]. It allows to specify a SQL
regular expression of tables to be skipped from the backup. Furthermore, Firebird 4.0 added -
INCLUDE[_DATA], which does the exact opposite.

gbak -b -skip_data "(COUNTRY|CURRENCY)" localhost/3050:C:\Data\inventory.fdb
C:\data\111.gbk -user SYSDBA -pass masterkey

Due to the presence of the “pipe” symbol, the argument to -skip_data must be
enclosed in double (or single) quotes.

For recovery purposes, it allows to exclude tables with reported corruptions from the backup.

If the process above did not fix the corruption, or error still persists, consider the following
alternatives:

• If the database is readable, pump data from the corrupted database to an empty database with
the same structure

• Use third-party Firebird recovery tools

• Revert to the last backup

The best way to avoid data loss is to make sure that you have enough regular
backups of your database and to regularly carry out test restorations. There is no
point taking backups every night, if they cannot be used when required. Test
always and frequently.

Equally, when attempting to recover a potentially corrupted database, always
work with a copy of the main database file and never with the original. Using the -
mend option can lead to silent deletions of data because gfix doesn’t care about
internal database constraints like foreign keys, etc., the -mend option simply says to
gfix “go ahead and clean out anything you don’t like”.

Chapter 12. Database Validation and Recovery

37

https://firebirdsql.org/en/third-party-tools/#rec

Chapter 13. Database Write Mode
Many operating systems employ a disk cache mechanism. This uses an area of memory (which may
be part of your server’s overall RAM or may be built into the disk hardware) to buffer writes to the
hardware. This improves the performance of applications that are write intensive but means that
the user is never certain when their data has actually been written to the physical disk.

With a database application, it is highly desirable to have the data written to disk as soon as
possible. Using Firebird, it is possible to specify whether the data should be physically written to
disk on a COMMIT or simply left to the operating system to write the data when it gets around to it.

To give the DBA or database owner full control of when data is written, the gfix - w[rite] command
can be used. The command takes two parameters:

gfix -w[rite] MODE database_name

The MODE parameter specifies whether data would be written immediately or later, and is one of:

sync

Data is written synchronously. This means that data is flushed to disk on COMMIT. This is safest for
your data.

async

Data is written asynchronously. The operating system controls when the data is actually written
to disk.

If your system is highly robust, and protected by a reliable UPS (Uninterruptible Power Supply), it is
possible to run asynchronously, but for most systems, synchronous running is safest as this will
help prevent corruption in the event of a power outage or other uncontrolled shutdown of the
server and/or database.

Firebird defaults to synchronous mode (forced writes enabled) on Linux and all
recent Windows versions.

Cache flushing on Windows servers is unreliable. If you set the database to async
mode (forced writes disabled), it is possible that the cache will never be flushed
and data could be lost if the server is never shutdown tidily.

If your database was originally created with Interbase 6 or an early beta version of
Firebird 1.0, then the database will be running in asynchronous mode — which is
not ideal.

Chapter 13. Database Write Mode

38

Chapter 14. Close Database Ignoring Linger
Setting
Firebird 3.0 introduced the database “linger” capability, which allows the SuperServer database
engine to keep a database file (and its page cache, etc.) open for a configured number of seconds
after the last connection was closed. This is generally beneficial for performance, but not ideal for
situations where a database needs a forced shutdown, and the file needs to be accessed by
applications other than Firebird.

When the database has no connections, the -nol[inger] option will close the database file
immediately. The LINGER setting of the database is retained and will work normally for the next
connection.

gfix -nol[inger] database_name

 The `-nol[inger] option was introduced in Firebird 3.0.

Chapter 14. Close Database Ignoring Linger Setting

39

Chapter 15. Rebuild ICU dependencies
Firebird uses the ICU library for some of its collations, and for indices on fields using those
collations. When moving a database between different Firebird instances — without using backup
and restore — and the destination Firebird instance uses a different ICU version, querying on fields
with those collations or using those indices will fail. A similar situation can occur — on
Linux — when an operating system update updated the ICU version, and Firebird uses the ICU
version provided by the OS. Before Firebird 3.0, the only option was to back up and restore the
database.

The -icu option will update collations and rebuild dependent indices in a database.

gfix -icu [-par[allel] n] database_name

Since Firebird 5.0, the -icu command can be combined with -PAR[ALLEL] to specify the number of
parallel workers for index rebuilding.

 Introduced in Firebird 3.0.

Chapter 15. Rebuild ICU dependencies

40

Chapter 16. Replica Mode
Since Firebird 4.0 — with the introduction of replication, a database is either a normal database
(non-replicated or the primary database in replication), or a replica. Replicas are divided in two
types: read-only (only updatable by the replicator), or read/write (updated by the replicator, but
also updatable by normal user connections).

The -repl[ica] command allows you to change the replica mode of a database. For example, make a
normal database a replica, or to promote a replica to a primary database in case of losing the
original primary.

gfix -repl[ica] { NONE | READ_ONLY | READ_WRITE } database_name

The -repl[ica] command accepts the following values:

NONE Change to primary database

READ_ONLY Change to read-only replica

READ_WRITE Change to read/write replica

Changing the replica mode of a database is not sufficient to set up replication. Replication and its
configuration are out of the scope of this manual.

This option should not be confused with the read-only or read/write mode
configured through -MO[DE], which governs whether a database is entirely read-
only. For example, a database set to -REPLICA READ_ONLY is still writable by the
replicator connection, while a database set to -MODE READ_ONLY is not writable at all.

 Introduced in Firebird 5.0.

Chapter 16. Replica Mode

41

Chapter 17. ODS Upgrade
The -up[grade] commandline option can upgrade the ODS (On-Disk Structure) of a database to the
latest supported minor (within the supported major version), without the need for a backup and
restore.

For example, gfix can perform an in-place upgrade from ODS 13.0 (Firebird 4.0) to ODS 13.1
(Firebird 5.0).

gfix -up[grade] database_name

Although a backup and restore are no longer needed to perform minor ODS
upgrades, we do recommended you back up your database before upgrading the
ODS with -upgrade.

 Introduced in Firebird 5.0.

Chapter 17. ODS Upgrade

42

Chapter 18. Caveats
This section summarises the various problems that you may encounter from time to time when
using gfix. They have already been discussed above, or mentioned in passing, but are explained in
more details here.

18.1. Shadows
The gstat seems to take some time to respond to the addition of shadow files to a database. After
adding two shadows to a test database, gstat still showed that there was a shadow count of zero.

Even worse, after killing the second shadow file and running the DROP SHADOW command in isql to
remove the one remaining shadow file, gstat decided that there were now three shadow files in
use.

18.2. Response Codes Are Usually Zero
Even using Firebird version 2 it appears that many commands, which fail to complete without an
error, return a response of 0 to the operating system.

This problem was fixed in Firebird 2.1. A successful operation now returns zero to
the shell while a failure returns 1.

This section will remain in the manual as there are still many users with older
versions of Firebird.

For example, the following shows two attempts to shut down the same database. The second one
should fail — it displays an error message, but still returns a zero response to the operating system.
This makes it impossible to build correctly error trapped database shutdown scripts as you can
never tell whether it actually worked or not.

linux> gfix -shut -force 5 my_employee
linux> echo $?
0

linux> gfix -shut -force 5 my_employee
Target shutdown mode is invalid for database -
"/home/norman/firebird/my_employee.fdb"
linux> echo $?
0

As mentioned above, this is no longer a problem from release 2.1 onwards. The
second attempt to close the database will correctly return 1 to the shell.

Chapter 18. Caveats

43

18.3. Force Closing a Database
Under Classic server, using the -fo[rce_shutdown] option to the -sh[utdown] command acts the same
as the -at[tach] option.

18.4. Limbo Transactions
There are a couple of problems with limbo transactions as discovered by Paul in his testing.

18.4.1. Limbo Transaction Options — All The Same?

When processing limbo transactions, it appears under Firebird 1.5 at least, that the -l[ist] -
pr[ompt] option is called regardless of whether you use -co[mmit], -r[ollback] or -tw[o_phase]. The
outcome is the same regardless of whether the DBA specifies a specific transaction number or 'all'
on the command line — a prompt is given with the option to commit, rollback or neither.

18.4.2. Limbo Transactions — Can Be Backed Up

Paul’s testing of limbo transactions revealed that it is possible to make a backup of a database with
limbo transactions. This backup can then be used to create a new database and the limbo
transactions will still be able to be listed. This applies to a file system copy of the database and to
version 1.5 of Firebird.

If you attempt to list the limbo transactions in the copy database and the original database has been
deleted, renamed or has been set to read-only, then gfix will present you with a request to supply
the correct path to the original database

linux>cd /home/norman/firebird
linux>cp my_employee.fdb my_new_employee.fdb

linux> mv my_employee.fdb my_old_employee.fdb

linux> gfix -list /home/norman/firebird/my_new_employee.fdb
Transaction 67 is in limbo.
Could not reattach to database for transaction 67.
Original path: /home/norman/firebird/my_employee.fdb

Enter a valid path: /home/norman/firebird/my_old_employee.fdb

 Multidatabase transaction:
 Host Site: linux
 Transaction 67
has been prepared.
 Remote Site: remote
 Database path: /opt/firebird/examples/testlimbo.fdb

In the above example, the original database my_employee.fdb was first of all copied using the
operating system command cp to my_new_employee.fdb and then renamed to my_old_employee.fdb.

Chapter 18. Caveats

44

Gfix was then run on the copy named my_new_employee.fdb and it noted the limbo transaction.
However, it could not find the original database file as it had been renamed, so gfix prompted for
the path to the original database file. When this was entered, gfix happily listed the details.

This implies that if you have a database with limbo transactions, and you copy it
using the operating system utilities and subsequently run gfix against the new
database, it is possible to have gfix fix limbo transactions in the original database
file, and not in the one you think it is updating — the copy.

It is also a good warning about making copies of databases without using the
correct tools for the job.

Chapter 18. Caveats

45

Appendix A: Document history
The exact file history is recorded in the firebird-documentation git repository; see
https://github.com/FirebirdSQL/firebird-documentation

Revision History

2.
3

24 February
2024

M
R

• Option -SQL_DIALECT was documented to be abbreviated to -S instead of
-SQ

• Move Cache Manager chapter into Database Startup and Shutdown as a
section, and add link to ticket asking for its removal

• Misc. copy editing

• Include gfix name in the document title, making it the same as on
https://firebirdsql.org/en/reference-manuals/

2.
2

17 Feb 2024 M
R

• Reordered document history so most recent changes are on the top

• Added more word-joiner in commandline switches between minus (-)
and first character to ensure they aren’t broken up on word wrap

• -USER cannot be abbreviated to -U

• Convert commandline options from definition list to sections

• Renamed section Gfix Commands to Common gfix Options

• Misc. copy-editing

• Added -PAR[ALLEL], -REPL[ICA], -UP[GRADE] documentation

• Option -SWEEP was documented to be abbreviated to -S instead of -SW

• Updated usage instruction printout with gfix of Firebird 5.0.0

• Add links from usage instruction to relevant sections

2.
1

13 Nov 2023 M
R

Page buffer section incorrectly remarked that default page buffer size is
8196, it is 2048.

2.
0

13 Nov 2020 M
R

• Documented new options introduced in Firebird 3: -tru[sted], -role, -
nol[inger], and -icu.

• Updated usage instruction printout with gfix of Firebird 3.0.7

• Updated commandline option abbreviations based on gfix of Firebird
3.0.7

• Added word-joiner to commandline options in text to prevent linewraps
inside options.

• Misc. copy-editing

1.
9

25 Jul 2020 AK Changed description for gfix -buffers, gfix -reserve, gfix recovery, and some
small fixes.

1.
8

19 Jun 2020 M
R

Conversion to AsciiDoc, minor copy-editing

Appendix A: Document history

46

https://github.com/FirebirdSQL/firebird-documentation
https://firebirdsql.org/en/reference-manuals/

Revision History

1.
7

06 Jan 2020 AP Fixed repository location from CVS to Github

1.
6

21 Nov 2019 ND Updated the Garbage section to better explain garbage causes etc. Courtesy
of Ann Harrison.

1.
5

13 Feb 2018 ND DOC-129 — Updated to correct details of the Sweep Interval and how to
check what the current interval is.

1.
4

09 Apr 2013 ND Updated to note that gfix returns correct error codes to the shell from
release 2.1 RC1 onwards.

1.
3

11 Oct 2011 ND Spelling errors corrected.

Updated for Firebird 2.5.

1.
2

25 Jun 2010 ND Fixed spacing on a couple of lists. Added an enhancement to the details of
the -mend recovery option. It can lead to a loss of data.

1.
1

20 Oct 2009 ND More minor updates and converted to a stand-alone manual.

1.
0

19 Jun 2007 ND Created as a chapter in the Command Line Utilities manual.

Appendix A: Document history

47

Appendix B: License notice
The contents of this Documentation are subject to the Public Documentation License Version 1.0
(the “License”); you may only use this Documentation if you comply with the terms of this License.
Copies of the License are available at https://www.firebirdsql.org/pdfmanual/pdl.pdf (PDF) and
https://www.firebirdsql.org/manual/pdl.html (HTML).

The Original Documentation is titled Firebird Database Housekeeping Utility.

The Initial Writer of the Original Documentation is: Norman Dunbar.

Copyright © 2007–2019. All Rights Reserved. Initial Writer contact: NormanDunbar at users dot
sourceforge dot net.

Contributor(s): Alexey Kovyazin, Mark Rotteveel

Portions created by Alexey Kovyazin are Copyright © 2020. All Rights Reserved. (Contributor
contact(s): -).

Portions created by Mark Rotteveel are Copyright © 2020-2024. All Rights Reserved. (Contributor
contact(s): mrotteveel at users dot sourceforge dot net).

Appendix B: License notice

48

https://www.firebirdsql.org/pdfmanual/pdl.pdf
https://www.firebirdsql.org/manual/pdl.html

	Firebird’s gfix Database Housekeeping Utility
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Command Line Options
	Chapter 3. Common gfix Options
	3.1. -?
	3.2. -PAR[ALLEL]
	3.3. -FE[TCH_PASSWORD]
	3.4. -USER
	3.5. -PA[SSWORD]
	3.6. -ROLE
	3.7. -TRU[STED]
	3.8. -Z
	3.9. More on Authentication

	Chapter 4. Shadow Files
	4.1. Activating Shadows
	4.2. Killing Shadows

	Chapter 5. Set Database Page Buffers
	Chapter 6. Limbo Transaction Management
	6.1. Listing Limbo Transactions
	6.2. Committing Or Rolling Back
	6.3. Automatic Two-phase Recovery

	Chapter 7. Changing The Database Mode
	Chapter 8. Setting The Database Dialect
	Chapter 9. Database Housekeeping And Garbage Collection
	9.1. Garbage
	9.1.1. Record Versions
	9.1.2. Cooperative Garbage Collection
	9.1.3. Background garbage Collection
	9.1.4. Combined Garbage Collection

	9.2. Setting Sweep Interval
	9.3. Manual Garbage Collection
	9.4. Disabling Automatic Sweeping

	Chapter 10. Database Startup and Shutdown
	10.1. Database Shutdown
	10.1.1. Preventing New Connections
	10.1.2. Preventing New Transactions
	10.1.3. Force Closure

	10.2. Starting a Database
	10.3. New Startup and Shutdown States in Firebird 2.0
	10.4. Shutdown Cache Manager

	Chapter 11. Database Page Space Utilisation
	Chapter 12. Database Validation and Recovery
	12.1. Database Validation
	12.1.1. Default Validation
	12.1.2. Full Validation
	12.1.3. Read-only Validation
	12.1.4. Ignore Checksum Errors

	12.2. Database Recovery
	12.2.1. Recover a Corrupt Database
	12.2.2. Practical tips for databases recovery

	Chapter 13. Database Write Mode
	Chapter 14. Close Database Ignoring Linger Setting
	Chapter 15. Rebuild ICU dependencies
	Chapter 16. Replica Mode
	Chapter 17. ODS Upgrade
	Chapter 18. Caveats
	18.1. Shadows
	18.2. Response Codes Are Usually Zero
	18.3. Force Closing a Database
	18.4. Limbo Transactions
	18.4.1. Limbo Transaction Options — All The Same?
	18.4.2. Limbo Transactions — Can Be Backed Up

	Appendix A: Document history
	Appendix B: License notice

