
Firebird 2.5 Language Reference
Dmitry Filippov, Alexander Karpeykin, Alexey Kovyazin, Dmitry Kuzmenko,

Denis Simonov, Paul Vinkenoog, Dmitry Yemanov

Version 1.9, 16 October 2021

The source of much copied reference material: Paul Vinkenoog
Copyright © 2017-2020 Firebird Project and all contributing authors, under the
Public Documentation License Version 1.0 . Please refer to the License Notice in
the Appendix

This volume represents a compilation of topics concerning FirebirdÕs SQL

language written by members of the Russian-speaking community of Firebird

developers and users. In 2014, it culminated in a language reference manual, in

Russian. At the instigation of Alexey Kovyazin, a campaign was launched amongst

Firebird users world-wide to raise funds to pay for a professional translation into

English, from which translations into other languages would proceed under the

auspices of the Firebird Documentation Project.

Preface

1

https://www.firebirdsql.org/manual/pdl.html

Table of Contents
1. About the Firebird SQL Language Reference: for Firebird 2.5 . Ê13

1.1. Subject Matter . Ê13

1.2. Authorship . Ê13

1.2.1. Language Reference Updates . Ê13

1.2.2. Gestation of the Big Book . Ê13

1.2.3. Contributors . Ê14

1.3. Acknowledgments . Ê15

2. SQL Language Structure . Ê17

2.1. Background to FirebirdÕs SQL Language . Ê17

2.1.1. SQL Flavours . Ê17

2.1.2. SQL Dialects . Ê17

2.1.3. Error Conditions . Ê19

2.2. Basic Elements: Statements, Clauses, Keywords . Ê19

2.3. Identifiers . Ê19

2.3.1. Rules for Regular Object Identifiers . Ê20

2.3.2. Rules for Delimited Object Identifiers . Ê20

2.4. Literals . Ê21

2.5. Operators and Special Characters . Ê21

2.6. Comments . Ê22

3. Data Types and Subtypes . Ê24

3.1. Integer Data Types . Ê26

3.1.1. SMALLINT. Ê26

3.1.2. INTEGER. Ê26

3.1.3. BIGINT. Ê27

3.1.4. Hexadecimal Format for Integer Numbers . Ê27

3.2. Floating-Point Data Types . Ê28

3.2.1. FLOAT. Ê28

3.2.2. DOUBLE PRECISION. Ê28

3.3. Fixed-Point Data Types . Ê29

3.3.1. NUMERIC. Ê29

3.3.2. DECIMAL. Ê30

3.4. Data Types for Dates and Times . Ê31

3.4.1. DATE. Ê32

3.4.2. TIME. Ê32

3.4.3. TIMESTAMP. Ê32

3.4.4. Operations Using Date and Time Values . Ê32

3.5. Character Data Types . Ê33

3.5.1. Unicode . Ê34

Table of Contents

2

3.5.2. Client Character Set . Ê34

3.5.3. Special Character Sets . Ê34

3.5.4. Collation Sequence . Ê35

3.5.5. Character Indexes . Ê36

3.5.6. Character Types in Detail . Ê37

3.6. Binary Data Types . Ê38

3.6.1. BLOB Subtypes . Ê38

3.6.2. BLOB Specifics . Ê39

3.6.3. ARRAY Type . Ê40

3.7. Special Data Types . Ê41

3.7.1. SQL_NULL Data Type . Ê42

3.8. Conversion of Data Types . Ê43

3.8.1. Explicit Data Type Conversion . Ê43

3.8.2. Implicit Data Type Conversion . Ê48

3.9. Custom Data Types!Ñ!Domains . Ê49

3.9.1. Domain Attributes . Ê49

3.9.2. Domain Override . Ê50

3.9.3. Creating and Administering Domains . Ê50

4. Common Language Elements . Ê53

4.1. Expressions . Ê53

4.1.1. Constants. Ê55

4.1.2. SQL Operators . Ê58

4.1.3. Conditional Expressions . Ê60

4.1.4. NULL in Expressions . Ê62

4.1.5. Subqueries . Ê63

4.2. Predicates . Ê65

4.2.1. Assertions . Ê65

4.2.2. Comparison Predicates . Ê65

4.2.3. Existential Predicates . Ê77

4.2.4. Quantified Subquery Predicates . Ê81

5. Data Definition (DDL) Statements . Ê83

5.1. DATABASE. Ê83

5.1.1. CREATE DATABASE. Ê83

5.1.2. ALTER DATABASE. Ê88

5.1.3. DROP DATABASE. Ê91

5.2. SHADOW. Ê91

5.2.1. CREATE SHADOW. Ê91

5.2.2. DROP SHADOW. Ê93

5.3. DOMAIN. Ê94

5.3.1. CREATE DOMAIN. Ê94

5.3.2. ALTER DOMAIN. Ê99

Table of Contents

3

5.3.3. DROP DOMAIN. Ê103
5.4. TABLE. Ê103

5.4.1. CREATE TABLE. Ê104

5.4.2. ALTER TABLE. Ê119

5.4.3. DROP TABLE. Ê126

5.4.4. RECREATE TABLE. Ê127

5.5. INDEX. Ê127

5.5.1. CREATE INDEX. Ê128

5.5.2. ALTER INDEX. Ê131

5.5.3. DROP INDEX. Ê132

5.5.4. SET STATISTICS. Ê133

5.6. VIEW. Ê134

5.6.1. CREATE VIEW. Ê134

5.6.2. ALTER VIEW. Ê138

5.6.3. CREATE OR ALTER VIEW. Ê139

5.6.4. DROP VIEW. Ê140

5.6.5. RECREATE VIEW. Ê141

5.7. TRIGGER. Ê142

5.7.1. CREATE TRIGGER. Ê142

5.7.2. ALTER TRIGGER. Ê148

5.7.3. CREATE OR ALTER TRIGGER. Ê151

5.7.4. DROP TRIGGER. Ê152

5.7.5. RECREATE TRIGGER. Ê152

5.8. PROCEDURE. Ê153

5.8.1. CREATE PROCEDURE. Ê154

5.8.2. ALTER PROCEDURE. Ê159

5.8.3. CREATE OR ALTER PROCEDURE. Ê162

5.8.4. DROP PROCEDURE. Ê163

5.8.5. RECREATE PROCEDURE. Ê164

5.9. EXTERNAL FUNCTION. Ê165

5.9.1. DECLARE EXTERNAL FUNCTION. Ê165

5.9.2. ALTER EXTERNAL FUNCTION. Ê168

5.9.3. DROP EXTERNAL FUNCTION. Ê169

5.10. FILTER. Ê170

5.10.1. DECLARE FILTER. Ê170

5.10.2. DROP FILTER. Ê173

5.11. SEQUENCE (GENERATOR) . Ê173

5.11.1. CREATE SEQUENCE (GENERATOR). Ê174

5.11.2. ALTER SEQUENCE. Ê175

5.11.3. SET GENERATOR. Ê175

5.11.4. DROP SEQUENCE (GENERATOR). Ê176

Table of Contents

4

5.12. EXCEPTION. Ê177
5.12.1. CREATE EXCEPTION. Ê177

5.12.2. ALTER EXCEPTION. Ê178

5.12.3. CREATE OR ALTER EXCEPTION. Ê179

5.12.4. DROP EXCEPTION. Ê180

5.12.5. RECREATE EXCEPTION. Ê181

5.13. COLLATION. Ê181

5.13.1. CREATE COLLATION. Ê181

5.13.2. DROP COLLATION. Ê184

5.14. CHARACTER SET. Ê185

5.14.1. ALTER CHARACTER SET. Ê185

5.15. ROLE. Ê186

5.15.1. CREATE ROLE. Ê186

5.15.2. ALTER ROLE. Ê187

5.15.3. DROP ROLE. Ê187

5.16. COMMENTS. Ê188

5.16.1. COMMENT ON. Ê188

6. Data Manipulation (DML) Statements . Ê191

6.1. SELECT. Ê191

6.1.1. FIRST, SKIP. Ê192

6.1.2. The SELECT Columns List . Ê194

6.1.3. The FROM clause . Ê198

6.1.4. Joins . Ê205

6.1.5. The WHERE clause . Ê214

6.1.6. The GROUP BY clause . Ê217

6.1.7. The PLAN clause . Ê222

6.1.8. UNION. Ê227

6.1.9. ORDER BY. Ê230

6.1.10. ROWS. Ê233

6.1.11. FOR UPDATE [OF]. Ê236

6.1.12. WITH LOCK. Ê236

6.1.13. INTO. Ê239

6.1.14. Common Table Expressions (Ò WITH É AS É SELECTÓ) . Ê241

6.2. INSERT. Ê246

6.2.1. INSERT É VALUES. Ê247

6.2.2. INSERT É SELECT. Ê247

6.2.3. INSERT É DEFAULT VALUES. Ê249

6.2.4. The RETURNING clause . Ê249

6.2.5. Inserting into BLOB columns . Ê250

6.3. UPDATE. Ê250

6.3.1. Using an alias . Ê252

Table of Contents

5

6.3.2. The SET Clause . Ê252

6.3.3. The WHERE Clause . Ê253

6.3.4. The ORDER BY and ROWS Clauses. Ê255

6.3.5. The RETURNING Clause . Ê255

6.3.6. Updating BLOB columns . Ê256

6.4. UPDATE OR INSERT. Ê256

6.4.1. The RETURNING clause . Ê258

6.4.2. Example of UPDATE OR INSERT. Ê258

6.5. DELETE. Ê258

6.5.1. Aliases . Ê259

6.5.2. WHERE. Ê260

6.5.3. PLAN. Ê260

6.5.4. ORDER BY and ROWS. Ê261

6.5.5. RETURNING. Ê262

6.6. MERGE. Ê263

6.7. EXECUTE PROCEDURE. Ê265

6.7.1. ÒExecutableÓ Stored Procedure . Ê266

6.7.2. Examples of EXECUTE PROCEDURE. Ê266

6.8. EXECUTE BLOCK. Ê267

6.8.1. Input and output parameters . Ê269

6.8.2. Statement Terminators . Ê270

7. Procedural SQL (PSQL) Statements . Ê271

7.1. Elements of PSQL . Ê271

7.1.1. DML Statements with Parameters . Ê271

7.1.2. Transactions . Ê271

7.1.3. Module Structure . Ê271

7.2. Stored Procedures . Ê274

7.2.1. Benefits of Stored Procedures . Ê274

7.2.2. Types of Stored Procedures . Ê274

7.2.3. Creating a Stored Procedure . Ê275

7.2.4. Modifying a Stored Procedure . Ê276

7.2.5. Deleting a Stored Procedure . Ê276

7.3. Stored Functions . Ê276

7.4. PSQL Blocks . Ê277

7.5. Triggers . Ê278

7.5.1. Firing Order (Order of Execution) . Ê278

7.5.2. DML Triggers . Ê278

7.5.3. Database Triggers . Ê279

7.5.4. Creating Triggers . Ê280

7.5.5. Modifying Triggers . Ê281

7.5.6. Deleting a Trigger . Ê281

Table of Contents

6

7.6. Writing the Body Code . Ê282

7.6.1. Assignment Statements . Ê282

7.6.2. DECLARE CURSOR. Ê283

7.6.3. DECLARE VARIABLE. Ê286

7.6.4. BEGIN É END. Ê289

7.6.5. IF É THEN É ELSE. Ê292

7.6.6. WHILE É DO. Ê293

7.6.7. LEAVE. Ê295

7.6.8. EXIT. Ê297

7.6.9. SUSPEND. Ê297

7.6.10. EXECUTE STATEMENT. Ê298

7.6.11. FOR SELECT. Ê305

7.6.12. FOR EXECUTE STATEMENT. Ê308

7.6.13. OPEN. Ê309

7.6.14. FETCH. Ê312

7.6.15. CLOSE. Ê313

7.6.16. IN AUTONOMOUS TRANSACTION. Ê314

7.6.17. POST_EVENT. Ê315

7.7. Trapping and Handling Errors . Ê316

7.7.1. System Exceptions . Ê317

7.7.2. Custom Exceptions . Ê317

7.7.3. EXCEPTION. Ê317

7.7.4. WHEN É DO. Ê320

8. Built-in Functions . Ê324

8.1. Context Functions . Ê324

8.1.1. RDB$GET_CONTEXT(). Ê324

8.1.2. RDB$SET_CONTEXT(). Ê326

8.2. Mathematical Functions . Ê327

8.2.1. ABS(). Ê327

8.2.2. ACOS(). Ê328

8.2.3. ASIN() . Ê328

8.2.4. ATAN(). Ê329

8.2.5. ATAN2(). Ê329

8.2.6. CEIL() , CEILING(). Ê330

8.2.7. COS(). Ê331

8.2.8. COSH(). Ê331

8.2.9. COT(). Ê332

8.2.10. EXP(). Ê332

8.2.11. FLOOR(). Ê333

8.2.12. LN() . Ê333

8.2.13. LOG(). Ê334

Table of Contents

7

8.2.14. LOG10(). Ê334
8.2.15. MOD(). Ê335

8.2.16. PI() . Ê336

8.2.17. POWER(). Ê336

8.2.18. RAND(). Ê336

8.2.19. ROUND(). Ê337

8.2.20. SIGN(). Ê338

8.2.21. SIN() . Ê338

8.2.22. SINH(). Ê339

8.2.23. SQRT(). Ê339

8.2.24. TAN(). Ê340

8.2.25. TANH(). Ê340

8.2.26. TRUNC(). Ê341

8.3. String Functions . Ê342

8.3.1. ASCII_CHAR(). Ê342

8.3.2. ASCII_VAL(). Ê343

8.3.3. BIT_LENGTH(). Ê343

8.3.4. CHAR_LENGTH(), CHARACTER_LENGTH(). Ê344

8.3.5. HASH(). Ê345

8.3.6. LEFT(). Ê346

8.3.7. LOWER(). Ê347

8.3.8. LPAD(). Ê347

8.3.9. OCTET_LENGTH(). Ê349

8.3.10. OVERLAY(). Ê350

8.3.11. POSITION(). Ê351

8.3.12. REPLACE(). Ê352

8.3.13. REVERSE(). Ê353

8.3.14. RIGHT(). Ê354

8.3.15. RPAD(). Ê355

8.3.16. SUBSTRING(). Ê356

8.3.17. TRIM(). Ê358

8.3.18. UPPER(). Ê359

8.4. Date and Time Functions . Ê360

8.4.1. DATEADD(). Ê360

8.4.2. DATEDIFF(). Ê361

8.4.3. EXTRACT(). Ê362

8.5. Type Casting Functions . Ê364

8.5.1. CAST(). Ê364

8.6. Bitwise Functions . Ê368

8.6.1. BIN_AND(). Ê368

8.6.2. BIN_NOT(). Ê369

Table of Contents

8

8.6.3. BIN_OR(). Ê369

8.6.4. BIN_SHL(). Ê370

8.6.5. BIN_SHR(). Ê371

8.6.6. BIN_XOR(). Ê371

8.7. UUID Functions . Ê372

8.7.1. CHAR_TO_UUID(). Ê372

8.7.2. GEN_UUID(). Ê373

8.7.3. UUID_TO_CHAR(). Ê373

8.8. Functions for Sequences (Generators) . Ê374

8.8.1. GEN_ID(). Ê374

8.9. Conditional Functions . Ê375

8.9.1. COALESCE(). Ê375

8.9.2. DECODE(). Ê376

8.9.3. IIF() . Ê377

8.9.4. MAXVALUE(). Ê378

8.9.5. MINVALUE(). Ê378

8.9.6. NULLIF(). Ê379

8.10. Aggregate Functions . Ê380

8.10.1. AVG(). Ê380

8.10.2. COUNT(). Ê381

8.10.3. LIST() . Ê382

8.10.4. MAX(). Ê383

8.10.5. MIN(). Ê384

8.10.6. SUM(). Ê385

9. Context Variables . Ê386

9.1. CURRENT_CONNECTION. Ê386

9.2. CURRENT_DATE. Ê386

9.3. CURRENT_ROLE. Ê387

9.4. CURRENT_TIME. Ê387

9.5. CURRENT_TIMESTAMP. Ê388

9.6. CURRENT_TRANSACTION. Ê389

9.7. CURRENT_USER. Ê390

9.8. DELETING. Ê390

9.9. GDSCODE. Ê391

9.10. INSERTING. Ê391

9.11. NEW. Ê392

9.12. 'NOW' . Ê392

9.13. OLD. Ê393

9.14. ROW_COUNT. Ê394

9.15. SQLCODE. Ê394

9.16. SQLSTATE. Ê395

Table of Contents

9

9.17. 'TODAY'. Ê396
9.18. 'TOMORROW'. Ê397

9.19. UPDATING. Ê398

9.20. 'YESTERDAY'. Ê398

9.21. USER. Ê399

10. Transaction Control . Ê400

10.1. Transaction Statements . Ê400

10.1.1. SET TRANSACTION. Ê400

10.1.2. COMMIT. Ê406

10.1.3. ROLLBACK. Ê408

10.1.4. SAVEPOINT. Ê410

10.1.5. RELEASE SAVEPOINT. Ê411

10.1.6. Internal Savepoints . Ê411

10.1.7. Savepoints and PSQL . Ê411

11. Security . Ê413

11.1. User Authentication . Ê413

11.1.1. Specially Privileged Users . Ê413

11.1.2. RDB$ADMIN Role . Ê415

11.1.3. Administrators . Ê418

11.1.4. SQL Statements for User Management . Ê418

11.2. SQL Privileges . Ê423

11.2.1. The Object Owner . Ê423

11.2.2. Statements for Granting Privileges . Ê424

11.2.3. Statements for Revoking Privileges . Ê429

Appendix A: Supplementary Information . Ê435

The RDB$VALID_BLR Field . Ê435

How Invalidation Works . Ê435

A Note on Equality . Ê437

Appendix B: Exception Codes and Messages . Ê439

SQLSTATE Error Codes and Descriptions . Ê439

SQLCODE and GDSCODE Error Codes and Descriptions . Ê446

Appendix C: Reserved Words and Keywords . Ê482

Reserved words . Ê482

Keywords . Ê483

Appendix D: System Tables . Ê488

RDB$BACKUP_HISTORY. Ê490

RDB$CHARACTER_SETS. Ê490

RDB$CHECK_CONSTRAINTS. Ê491

RDB$COLLATIONS. Ê491

RDB$DATABASE. Ê492

RDB$DEPENDENCIES. Ê493

Table of Contents

10

RDB$EXCEPTIONS. Ê494
RDB$FIELDS. Ê494

RDB$FIELD_DIMENSIONS. Ê498

RDB$FILES. Ê498

RDB$FILTERS. Ê499

RDB$FORMATS. Ê499

RDB$FUNCTIONS. Ê500

RDB$FUNCTION_ARGUMENTS. Ê501

RDB$GENERATORS. Ê502

RDB$INDICES. Ê502

RDB$INDEX_SEGMENTS. Ê504

RDB$LOG_FILES. Ê504

RDB$PAGES. Ê504

RDB$PROCEDURES. Ê505

RDB$PROCEDURE_PARAMETERS. Ê506

RDB$REF_CONSTRAINTS. Ê507

RDB$RELATIONS. Ê508

RDB$RELATION_CONSTRAINTS. Ê509

RDB$RELATION_FIELDS. Ê510

RDB$ROLES. Ê511

RDB$SECURITY_CLASSES. Ê511

RDB$TRANSACTIONS. Ê512

RDB$TRIGGERS. Ê512

RDB$TRIGGER_MESSAGES. Ê514

RDB$TYPES. Ê514

RDB$USER_PRIVILEGES. Ê515

RDB$VIEW_RELATIONS. Ê515

Appendix E: Monitoring Tables . Ê517

MON$ATTACHMENTS. Ê518

Using MON$ATTACHMENTS to Kill a Connection . Ê519

MON$CALL_STACK. Ê519

MON$CONTEXT_VARIABLES. Ê521

MON$DATABASE . Ê521

MON$IO_STATS. Ê522

MON$MEMORY_USAGE. Ê523

MON$RECORD_STATS. Ê524

MON$STATEMENTS. Ê524

Using MON$STATEMENTS to Cancel a Query . Ê525

MON$TRANSACTIONS. Ê525

Appendix F: Character Sets and Collation Sequences . Ê527

Appendix G: License notice . Ê533

Table of Contents

11

Appendix H: Document History . Ê534

Table of Contents

12

Chapter 1. About the Firebird SQL Language
Reference: for Firebird 2.5
This Firebird SQL Language Reference is the first comprehensive manual to cover all aspects of the
query language used by developers to communicate, through their applications, with the Firebird
relational database management system. It has a long history.

1.1. Subject Matter
The subject matter of this volume is wholly FirebirdÕs implementation of the SQL relational
database language. Firebird conforms closely with international standards for SQL, from data type
support, data storage structures, referential integrity mechanisms, to data manipulation
capabilities and access privileges. Firebird also implements a robust procedural
language!Ñ!procedural SQL (PSQL)!Ñ!for stored procedures, triggers and dynamically-executable
code blocks. These are the areas addressed in this volume.

1.2. Authorship
The material for assembling this Language Reference has been accumulating in the tribal lore of
the open source community of Firebird core developers and user-developers for 15 years. The gift
of the InterBase 6 open source codebase in July 2000 from the (then) Inprise/Borland conglomerate
was warmly welcomed. However, it came without rights to existing documentation. Once the code
base had been forked by its owners for private, commercial development, it became clear that the
open source, non-commercial Firebird community would never be granted right of use.

The two important books from the InterBase 6 published set were the Data Definition Guide and the
Language Reference. The former covered the data definition language (DDL) subset of the SQL
language, while the latter covered most of the rest. Fortunately for Firebird users over the years,
both have been easy to find on-line as PDF books.

1.2.1. Language Reference Updates

The Data Definition Guide , covering the creation and maintenance of metadata for databases, was
Ògood enoughÓ for several years: the data definition language (DDL) of a DBMS is stable and grows
slowly in comparison to the data manipulation language (DML) employed for queries and the PSQL
used for server-based programming.

The leader of the Firebird ProjectÕs documentation team, Paul Vinkenoog, took up the cause for
documenting the huge volume of improvements and additions to DML and PSQL as Firebird
advanced through its releases. Paul was personally responsible for collating, assembling and, to a
great extent, authoring a cumulative series of ÒLanguage Reference UpdatesÓ!Ñ!one for every major
release from v.1.5 forward.

1.2.2. Gestation of the Big Book

From around 2010, Paul, with Firebird Project lead Dmitry Yemanov and a documenter colleague

Chapter 1. About the Firebird SQL Language Reference: for Firebird 2.5

13

Thomas Woinke, set about the task of designing and assembling a complete SQL language reference
for Firebird. They began with the material from the LangRef Updates, which is voluminous. It was
going to be a big job but, for all concerned, a spare-time one.

Then, in 2013-4, two benefactor companies!Ñ!MICEX amd IBSurgeon!Ñ!funded three writers to take
up this stalled book outline and publish a Firebird 2.5 Language Reference in Russian. They wrote
the bulk of the missing DDL section from scratch and wrote, translated or reused DML and PSQL
material from the LangRef Updates, Russian language support forums, Firebird release notes, read-
me files and other sources. By the end of 2014, they had the task almost complete, in the form of a
Microsoft Word document.

Translation É

The Russian sponsors, recognising that their efforts needed to be shared with the world-wide
Firebird community, asked some Project members to initiate a crowd-funding campaign to have the
Russian text professionally translated into English. The translated text would be edited and
converted to the ProjectÕs standard DocBook format for addition to the open document library of
the Firebird Project. From there, the source text would be available for translation into other
languages for addition to the library.

The fund-raising campaign happened at the end of 2014 and was successful. In June, 2015,
professional translator Dmitry Borodin began translating the Russian text. From him, the raw
English text went in stages for editing and DocBook conversion by Helen Borrie!Ñ!and here is The
Firebird SQL Language Reference for V.2.5 , byÉeveryone!

É and More Translation

Once the DocBook source appears in CVS, we hope the trusty translators will start making versions
in German, Japanese, Italian, French, Portuguese, Spanish, Czech. Certainly, we never have enough
translators so please, you Firebirders who have English as a second language, do consider
translating some sections into your first language.

1.2.3. Contributors

Direct Content

¥ Dmitry Filippov (writer)

¥ Alexander Karpeykin (writer)

¥ Alexey Kovyazin (writer, editor)

¥ Dmitry Kuzmenko (writer, editor)

¥ Denis Simonov (writer, editor, coordinator)

¥ Paul Vinkenoog (writer, designer)

¥ Dmitry Yemanov (writer)

Resource Content

¥ Adriano dos Santos Fernandes

Chapter 1. About the Firebird SQL Language Reference: for Firebird 2.5

14

¥ Alexander Peshkov

¥ Vladyslav Khorsun

¥ Claudio Valderrama

¥ Helen Borrie

¥ and others

Translation

¥ Dmitry Borodin, megaTranslations.ru

Editing and Conversion of English Text

¥ Helen Borrie

1.3. Acknowledgments
The first full language reference manual for Firebird would not have eventuated without the
funding that finally brought it to fruition. We acknowledge these contributions with gratitude and
thank you all for stepping up.

Sponsors and Other Donors

Sponsors of the Russian Language Reference Manual

Moscow Exchange (Russia)

Moscow Exchange is the largest exchange holding in Russia and Eastern Europe, founded on
December 19, 2011, through the consolidation of the MICEX (founded in 1992) and RTS (founded in
1995) exchange groups. Moscow Exchange ranks among the worldÕs top 20 exchanges by trading
in bonds and by the total capitalization of shares traded, as well as among the 10 largest exchange
platforms for trading derivatives.

IBSurgeon (ibase.ru) (Russia)

Technical support and developer of administrator tools for the Firebird DBMS.

Sponsors of the Translation Project

Syntess Software BV (Netherlands)

Mitaro Business Solutions (Liechtenstein)

Other Donors

Listed below are the names of companies and individuals whose cash contributions covered the
costs for translation into English, editing of the raw, translated text and conversion of the whole
into the Firebird ProjectÕs standard DocBook 4 documentation source format.

Chapter 1. About the Firebird SQL Language Reference: for Firebird 2.5

15

https://www.moex.com
https://www.ib-aid.com
https://ibase.ru
https://www.syntess.nl
https://www.mitaro.li

Integrity Software Design, Inc.
(U.S.A.)

dimari GmbH (Germany) beta Eigenheim GmbH
(Germany)

KIMData GmbH (Germany) Jason Wharton (U.S.A) Trans-X (Sweden)

Sanchez Balcewich (Uruguay) Cointec Ingenieros y
Consultores, S.L. (Spain)

Aage Johansen (Norway)

Mattic Software (Netherlands) André Knappstein (Germany) Paul F. McGuire (U.S.A.)

Marcus Marques da Rocha
(Brazil)

Martin Kerkhoff Thomas Vedel (Denmark)

Bulhan Bulhan (Australia) Alexandre Benson Smith
(Brazil)

Guillermo Nabrink (Brazil)

Pierre Voirin (France) Heiko Tappe (Germany) Doug Chamberlin (U.S.A.)

Craig Cox (U.S.A.) OMNet, Inc. (Switzerland) Alfred Steller (Germany)

Konrad Butz (Germany) Thomas Smekal (Canada) Carlos H. Cantu (Brazil)

XTRALOG SARL (France) Laszlo Urmenyi (Brazil) Fernando Pimenta (Brazil)

Rudolf Grauberger (Germany) Thomas Steinmaurer (Austria) Rene Lobsiger (Switzerland)

Hian Pin Tjioe Xavier Codina Mick Arundell (Australia)

Russell Belding (New Zealand) Anticlei Scheid (Brazil) Luca Minuti (Italy)

Mark Rotteveel (Netherlands) Chris Mathews (U.S.A.) Hannes Streicher (Germany)

Wolfgang Lemmermeyer
(Germany)

Paolo Sciarrini (Italy) Acosta Belzusarri

Daniel Motos Guerra Alberto Alfonso Luna Simeon Bodurov

Cees Meijer Robert Nixon Olivier Dehorter (France)

András Omacht (Hungary) Web Express Sergio Conzalez

Marc Bleuwart Gabor Boros Shaymon Gracia Campos

Cserna Zsombor (Hungary) David Keith Uwe Gerold

Daniele Teti (Italy) Pedro Pablo Busto Criado Istvan Szabo

Spiridon Pavlovic J. L. Garcia Naranjo A. Morales Morales

Helen Cullen (New Zealand) Francisco Ibarra Ozuna Ê

Chapter 1. About the Firebird SQL Language Reference: for Firebird 2.5

16

Chapter 2. SQL Language Structure
This reference describes the SQL language supported by Firebird.

2.1. Background to FirebirdÕs SQL Language
To begin, a few points about some characteristics that are in the background to FirebirdÕs language
implementation.

2.1.1. SQL Flavours

Distinct subsets of SQL apply to different sectors of activity. The SQL subsets in FirebirdÕs language
implementation are:

¥ Dynamic SQL (DSQL)

¥ Procedural SQL (PSQL)

¥ Embedded SQL (ESQL)

¥ Interactive SQL (ISQL)

Dynamic SQL is the major part of the language which corresponds to the Part 2 (SQL/Foundation)
part of the SQL specification. DSQL represents statements passed by client applications through the
public Firebird API and processed by the database engine.

Procedural SQL augments Dynamic SQL to allow compound statements containing local variables,
assignments, conditions, loops and other procedural constructs. PSQL corresponds to the Part 4
(SQL/PSM) part of the SQL specifications. Originally, PSQL extensions were available in persistent
stored modules (procedures and triggers) only, but in more recent releases they were surfaced in
Dynamic SQL as well (see EXECUTE BLOCK).

Embedded SQL defines the DSQL subset supported by Firebird gpre , the application which allows
you to embed SQL constructs into your host programming language (C, C++, Pascal, Cobol, etc.) and
preprocess those embedded constructs into the proper Firebird API calls.

! Only a portion of the statements and expressions implemented in DSQL are
supported in ESQL.

Interactive ISQL refers to the language that can be executed using Firebird isql , the command-line
application for accessing databases interactively. As a regular client application, its native language
is DSQL. It also offers a few additional commands that are not available outside its specific
environment.

Both DSQL and PSQL subsets are completely presented in this reference. Neither ESQL nor ISQL
flavours are described here unless mentioned explicitly.

2.1.2. SQL Dialects

SQL dialect is a term that defines the specific features of the SQL language that are available when

Chapter 2. SQL Language Structure

17

accessing a database. SQL dialects can be defined at the database level and specified at the
connection level. Three dialects are available:

¥ Dialect 1 is intended solely to allow backward comptibility with legacy databases from very old
InterBase versions, v.5 and below. Dialect 1 databases retain certain language features that
differ from Dialect 3, the default for Firebird databases.

" Date and time information are stored in a DATE data type. A TIMESTAMP data type is also
available, that is identical to this DATE implementation.

" Double quotes may be used as an alternative to apostrophes for delimiting string data. This
is contrary to the SQL standard!Ñ!double quotes are reserved for a distinct syntactic
purpose both in standard SQL and in Dialect 3. Double-quoting strings is therefore to be
avoided strenuously.

" The precision for NUMERIC and DECIMAL data types is smaller than in Dialect 3 and, if the
precision of a fixed decimal number is greater than 9, Firebird stores it internally as a long
floating point value.

" The BIGINT (64-bit integer) data type is not supported.

" Identifiers are case-insensitive and must always comply with the rules for regular
identifiers!Ñ!see the section Identifiers below.

" Although generator values are stored as 64-bit integers, a Dialect 1 client request, SELECT
GEN_ID (MyGen, 1), for example, will return the generator value truncated to 32 bits.

¥ Dialect 2 is available only on the Firebird client connection and cannot be set in the database. It
is intended to assist debugging of possible problems with legacy data when migrating a
database from dialect 1 to 3.

¥ In Dialect 3 databases,

" numbers (DECIMAL and NUMERIC data types) are stored internally as long fixed point values
(scaled integers) when the precision is greater than 9.

" The TIME data type is available for storing time-of-day data only.

" The DATE data type stores only date information.

" The 64-bit integer data type BIGINT is available.

" Double quotes are reserved for delimiting non-regular identifiers, enabling object names
that are case-sensitive or that do not meet the requirements for regular identifiers in other
ways.

" All strings must be delimited with single quotes (apostrophes).

" Generator values are stored as 64-bit integers.

"
Use of Dialect 3 is strongly recommended for newly developed databases and
applications. Both database and connection dialects should match, except under
migration conditions with Dialect 2.

This reference describes the semantics of SQL Dialect 3 unless specified otherwise.

Chapter 2. SQL Language Structure

18

2.1.3. Error Conditions

Processing of every SQL statement either completes successfully or fails due to a specific error
condition.

2.2. Basic Elements: Statements, Clauses, Keywords
The primary construct in SQL is the statement . A statement defines what the database management
system should do with a particular data or metadata object. More complex statements contain
simpler constructs!Ñ! clauses and options .

Clauses

A clause defines a certain type of directive in a statement. For instance, the WHERE clause in a
SELECT statement and in some other data manipulation statements (UPDATE, DELETE) specifies
criteria for searching one or more tables for the rows that are to be selected, updated or deleted.
The ORDER BY clause specifies how the output data!Ñ!result set!Ñ!should be sorted.

Options

Options, being the simplest constructs, are specified in association with specific keywords to
provide qualification for clause elements. Where alternative options are available, it is usual for
one of them to be the default, used if nothing is specified for that option. For instance, the SELECT
statement will return all of the rows that match the search criteria unless the DISTINCT option
restricts the output to non-duplicated rows.

Keywords

All words that are included in the SQL lexicon are keywords. Some keywords are reserved ,
meaning their usage as identifiers for database objects, parameter names or variables is
prohibited in some or all contexts. Non-reserved keywords can be used as identifiers, although it
is not recommended. From time to time, non-reserved keywords may become reserved when
some new language feature is introduced.

For instance, the following statement will be executed without errors because, although ABS is a
keyword, it is not a reserved word.

CREATE TABLE T (ABS INT NOT NULL);

On the contrary, the following statement will return an error because ADD is both a keyword and
a reserved word.

CREATE TABLE T (ADD INT NOT NULL);

Refer to the list of reserved words and keywords in the chapter Reserved Words and Keywords .

2.3. Identifiers
All database objects have names, often called identifiers . Two types of names are valid as

Chapter 2. SQL Language Structure

19

identifiers: regular names, similar to variable names in regular programming languages, and
delimited names that are specific to SQL. To be valid, each type of identifier must conform to a set of
rules, as follows:

2.3.1. Rules for Regular Object Identifiers

¥ Length cannot exceed 31 characters

¥ The name must start with an unaccented, 7-bit ASCII alphabetic character. It may be followed
by other 7-bit ASCII letters, digits, underscores or dollar signs. No other characters, including
spaces, are valid. The name is case-insensitive, meaning it can be declared and used in either
upper or lower case. Thus, from the systemÕs point of view, the following names are the same:

fullname
FULLNAME
FuLlNaMe
FullName

Regular name syntax

<name> ::=
Ê <letter> | <name><letter> | <name><digit> | <name>_ | <name>$

<letter> ::= <upper letter> | <lower letter>

<upper letter> ::= A | B | C | D | E | F | G | H | I | J | K | L | M |
Ê N | O | P | Q | R | S | T | U | V | W | X | Y | Z

<lower letter> ::= a | b | c | d | e | f | g | h | i | j | k | l | m |
Ê n | o | p | q | r | s | t | u | v | w | x | y | z

<digit> ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

2.3.2. Rules for Delimited Object Identifiers

¥ Length cannot exceed 31 characters

¥ The entire string must be enclosed in double-quotes, e.g. "anIdentifier"

¥ It may contain characters from any Latin character set, including accented characters, spaces
and special characters

¥ An identifier can be a reserved word

¥ Delimited identifiers are case-sensitive in all contexts

¥ Trailing spaces in delimited names are removed, as with any string constant

¥ Delimited identifiers are available in Dialect 3 only. For more details on dialects, see SQL
Dialects

Chapter 2. SQL Language Structure

20

Delimited name syntax

<delimited name> ::= "<permitted_character>[<permitted_character> É]"

!

A delimited identifier such as "FULLNAME" is the same as the regular identifiers
FULLNAME, fullname , FullName, and so on. The reason is that Firebird stores all
regular names in upper case, regardless of how they were defined or declared.
Delimited identifiers are always stored according to the exact case of their
definition or declaration. Thus, "FullName" (quoted) is different from FullName
(unquoted, i.e., regular) which is stored as FULLNAME in the metadata.

2.4. Literals
Literals are used to represent data in a direct format. Examples of standard types of literals are:

integer - 0, -34, 45, 0X080000000;
real - 0.0, -3.14, 3.23e-23;
string - 'text', 'don''t!';
binary string - x'48656C6C6F20776F726C64'
date - DATE'2018-01-19';
time - TIME'15:12:56';
timestamp - TIMESTAMP'2018-01-19 13:32:02';
null state - null

Details about handling the literals for each data type are discussed in the next chapter, Data Types
and Subtypes .

2.5. Operators and Special Characters
A set of special characters is reserved for use as operators or separators.

<special char> ::=
Ê <space> | " | % | & | ' | (|) | * | + | , | -
Ê | . | / | : | ; | < | = | > | ? | [|] | ^ | { | }

Some of these characters, alone or in combinations, may be used as operators (arithmetical, string,
logical), as SQL command separators, to quote identifiers and to mark the limits of string literals or
comments.

Chapter 2. SQL Language Structure

21

Operator Syntax

<operator> ::=
Ê <string concatenation operator>
Ê | <arithmetic operator>
Ê | <comparison operator>
Ê | <logical operator>

<string concatentation operator> ::= "||"

<arithmetic operator> ::= * | / | + | - |

<comparison operator> ::=
Ê = | <> | != | ~= | ^= | > | < | >= | <=
Ê | !> | ~> | ^> | !< | ~< | ^<

<logical operator> ::= NOT | AND | OR

For more details on operators, see Expressions .

2.6. Comments
Comments may be present in SQL scripts, SQL statements and PSQL modules. A comment can be
any text specified by the code writer, usually used to document how particular parts of the code
work. The parser ignores the text of comments.

Firebird supports two types of comments: block and in-line .

Syntax

<comment> ::= <block comment> | <single-line comment>

<block comment> ::=
Ê /* <ASCII char>[<ASCII char> É] */

<single-line comment> ::=
Ê -- <ASCII char>[<ASCII char> É]<end line>

Block comments start with the /* character pair and end with the */ character pair. Text in block
comments may be of any length and can occupy multiple lines.

In-line comments start with a pair of hyphen characters, -- and continue up to the end of the
current line.

Chapter 2. SQL Language Structure

22

Example

CREATE PROCEDURE P(APARAM INT)
Ê RETURNS (B INT)
AS
BEGIN
Ê /* This text will be ignored during the execution of the statement
Ê since it is a comment
Ê */
Ê B = A + 1; -- In-line comment
Ê SUSPEND;
END

Chapter 2. SQL Language Structure

23

Chapter 3. Data Types and Subtypes
Data of various types are used to:

¥ define columns in a database table in the CREATE TABLE statement or change columns using ALTER
TABLE

¥ declare or change a domain using the CREATE DOMAIN or ALTER DOMAIN statements

¥ declare local variables in stored procedures, PSQL blocks and triggers and specify parameters in
stored procedures

¥ indirectly specify arguments and return values when declaring external functions
(UDFs!Ñ!user-defined functions)

¥ provide arguments for the CAST() function when explicitly converting data from one type to
another

Table 1. Overview of Data Types

Name Size Precision &
Limits

Description

BIGINT 64 bits From -2 63 to (263 -
1)

The data type is available in Dialect 3
only

BLOB Varying The size of a BLOB
segment is limited
to 64K. The
maximum size of
a BLOB field is 4
GB

A data type of a dynamically variable
size for storing large amounts of data,
such as images, text, digital sounds.
The basic structural unit is a segment.
The blob subtype defines its content

CHAR(n) ,
CHARACTER(n)

n characters. Size
in bytes depends
on the encoding,
the number of
bytes in a
character

from 1 to 32,767
bytes

A fixed-length character data type.
When its data is displayed, trailing
spaces are added to the string up to
the specified length. Trailing spaces
are not stored in the database but are
restored to match the defined length
when the column is displayed on the
client side. Network traffic is reduced
by not sending spaces over the LAN. If
the number of characters is not
specified, 1 is used by default.

DATE 32 bits From 0001-01-01
AD to 9999-12-31
AD

ISC_DATE. Date only, no time element

Chapter 3. Data Types and Subtypes

24

Name Size Precision &
Limits

Description

DECIMAL (
precision , scale)

Varying (16, 32 or
64 bits)

precision = from 1
to 18, defines the
least possible
number of digits
to store; scale =
from 0 to 18,
defines the
number of digits
after the decimal
point

A number with a decimal point that
has scale digits after the point. scale
must be less than or equal to precision .
Example: DECIMAL(10,3) contains a
number in exactly the following
format: ppppppp.sss

DOUBLE PRECISION64 bits 2.225 * 10 -308 to
1.797 * 10308

Double-precision IEEE, ~15 digits,
reliable size depends on the platform

FLOAT 32 bits 1.175 * 10 -38 to
3.402 * 1038

Single-precision IEEE, ~7 digits

INTEGER, INT 32 bits -2,147,483,648 up
to 2,147,483,647

Signed long

NUMERIC (
precision , scale)

Varying (16, 32 or
64 bits)

precision = from 1
to 18, defines the
exact number of
digits to store;
scale = from 0 to
18, defines the
number of digits
after the decimal
point

A number with a decimal point that
has scale digits after the point. scale
must be less than or equal to precision .
Example: NUMERIC(10,3) contains a
number in exactly the following
format: ppppppp.sss

SMALLINT 16 bits -32,768 to 32,767 Signed short (word)

TIME 32 bits 0:00 to
23:59:59.9999

ISC_TIME. Time of day. It cannot be
used to store an interval of time

TIMESTAMP 64 bits (2 X 32 bits) From start of day
0001-01-01 AD to
end of day 9999-
12-31 AD

Date and time of day

Chapter 3. Data Types and Subtypes

25

Name Size Precision &
Limits

Description

VARCHAR(n) , CHAR
VARYING, CHARACTER
VARYING

n characters. Size
in bytes depends
on the encoding,
the number of
bytes in a
character

from 1 to 32,765
bytes

Variable length string type. The total
size of characters in bytes cannot be
larger than (32KB-3), taking into
account their encoding. The two
trailing bytes store the declared
length. There is no default size: the n
argument is mandatory. Leading and
trailing spaces are stored and they are
not trimmed, except for those trailing
characters that are past the declared
length.

!
Note About Dates

Bear in mind that a time series consisting of dates in past centuries is processed
without taking into account the actual historical facts, as though the Gregorian
calendar were applicable throughout the entire series.

3.1. Integer Data Types
The SMALLINT, INTEGER and BIGINT data types are used for integers of various precision in Dialect 3.
Firebird does not support an unsigned integer data type.

3.1.1. SMALLINT

The 16-bit SMALLINT data type is for compact data storage of integer data for which only a narrow
range of possible values is required. Numbers of the SMALLINT type are within the range from -2 16 to
216 - 1, that is, from -32,768 to 32,767.

SMALLINT Examples

CREATE DOMAIN DFLAG AS SMALLINT DEFAULT 0 NOT NULL
Ê CHECK (VALUE=-1 OR VALUE=0 OR VALUE=1);

CREATE DOMAIN RGB_VALUE AS SMALLINT;

3.1.2. INTEGER

The INTEGER data type is a 32-bit integer. The shorthand name of the data type is INT. Numbers of the
INTEGER type are within the range from -2 32 to 232 - 1, that is, from -2,147,483,648 to 2,147,483,647.

Chapter 3. Data Types and Subtypes

26

INTEGER Example

CREATE TABLE CUSTOMER (
Ê CUST_NO INTEGER NOT NULL,
Ê CUSTOMER VARCHAR(25) NOT NULL,
Ê CONTACT_FIRST VARCHAR(15),
Ê CONTACT_LAST VARCHAR(20),
Ê ...
Ê PRIMARY KEY (CUST_NO))

3.1.3. BIGINT

BIGINT is an SQL:99-compliant 64-bit integer data type, available only in Dialect 3. If a client uses
Dialect 1, the generator value sent by the server is reduced to a 32-bit integer (INTEGER). When
Dialect 3 is used for connection, the generator value is of type BIGINT.

Numbers of the BIGINT type are within the range from -2 63 to 263 - 1, or from
-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.

3.1.4. Hexadecimal Format for Integer Numbers

Starting from Firebird 2.5, constants of the three integer types can be specified in hexadecimal
format by means of 9 to 16 hexadecimal digits for BIGINT or 1 to 8 digits for INTEGER. Hex
representation for writing to SMALLINT is not explicitly supported but Firebird will transparently
convert a hex number to SMALLINT if necessary, provided it falls within the ranges of negative and
positive SMALLINT.

The usage and numerical value ranges of hexadecimal notation are described in more detail in the
discussion of number constants in the chapter entitled Common Language Elements .

Chapter 3. Data Types and Subtypes

27

Examples Using Integer Types

CREATE TABLE WHOLELOTTARECORDS (
Ê ID BIGINT NOT NULL PRIMARY KEY,
Ê DESCRIPTION VARCHAR(32)
);

INSERT INTO MYBIGINTS VALUES (
Ê -236453287458723,
Ê 328832607832,
Ê 22,
Ê -56786237632476,
Ê 0X6F55A09D42, -- 478177959234
Ê 0X7FFFFFFFFFFFFFFF, -- 9223372036854775807
Ê 0XFFFFFFFFFFFFFFFF, -- -1
Ê 0X80000000, -- -2147483648, an INTEGER
Ê 0X080000000, -- 2147483648, a BIGINT
Ê 0XFFFFFFFF, -- -1, an INTEGER
Ê 0X0FFFFFFFF -- 4294967295, a BIGINT
);

The hexadecimal INTEGERs in the above example are automatically cast to BIGINT before being
inserted into the table. However, this happens after the numerical value is determined, so
0x80000000 (8 digits) and 0x080000000 (9 digits) will be saved as different BIGINT values.

3.2. Floating-Point Data Types
Floating point data types are stored in an IEEE 754 binary format that comprises sign, exponent and
mantissa. Precision is dynamic, corresponding to the physical storage format of the value, which is
exactly 4 bytes for the FLOAT type and 8 bytes for DOUBLE PRECISION.

Considering the peculiarities of storing floating-point numbers in a database, these data types are
not recommended for storing monetary data. For the same reasons, columns with floating-point
data are not recommended for use as keys or to have uniqueness constraints applied to them.

For testing data in columns with floating-point data types, expressions should check using a range,
for instance, BETWEEN, rather than searching for exact matches.

When using these data types in expressions, extreme care is advised regarding the rounding of
evaluation results.

3.2.1. FLOAT

The FLOAT data type has an approximate precision of 7 digits after the decimal point. To ensure the
safety of storage, rely on 6 digits.

3.2.2. DOUBLE PRECISION

The DOUBLE PRECISION data type is stored with an approximate precision of 15 digits.

Chapter 3. Data Types and Subtypes

28

3.3. Fixed-Point Data Types
Fixed-point data types ensure the predictability of multiplication and division operations, making
them the choice for storing monetary values. Firebird implements two fixed-point data types:
NUMERIC and DECIMAL. According to the standard, both types limit the stored number to the declared
scale (the number of digits after the decimal point).

Different treatments limit precision for each type: precision for NUMERIC columns is exactly Òas
declaredÓ, while DECIMAL columns accepts numbers whose precision is at least equal to what was
declared.

! The behaviour of NUMERIC and DECIMAL in Firebird is like the SQL-standard DECIMAL;
the precision is at least equal to what was declared.

For instance, NUMERIC(4, 2) defines a number consisting altogether of four digits, including two
digits after the decimal point; that is, it can have up to two digits before the point and no more than
two digits after the point. If the number 3.1415 is written to a column with this data type definition,
the value of 3.14 will be saved in the NUMERIC(4, 2) column.

The form of declaration for fixed-point data, for instance, NUMERIC(p, s), is common to both types. It
is important to realise that the s argument in this template is scale, rather than Òa count of digits
after the decimal pointÓ. Understanding the mechanism for storing and retrieving fixed-point data
should help to visualise why: for storage, the number is multiplied by 10 s (10 to the power of s),
converting it to an integer; when read, the integer is converted back.

The method of storing fixed-point data in the DBMS depends on several factors: declared precision,
database dialect, declaration type.

Table 2. Method of Physical Storage for Real Numbers

Precision Data type Dialect 1 Dialect 3

1 - 4 NUMERIC SMALLINT SMALLINT

1 - 4 DECIMAL INTEGER INTEGER

5 - 9 NUMERIC or DECIMAL INTEGER INTEGER

10 - 18 NUMERIC or DECIMAL DOUBLE PRECISION BIGINT

3.3.1. NUMERIC

Data Declaration Format

Ê NUMERIC
| NUMERIC(precision)
| NUMERIC(precision , scale)

Table 3. NUMERIC Type Parameters

Chapter 3. Data Types and Subtypes

29

Parameter Description

precision Precision, between 1 and 18. Defaults to 9.

scale Scale, between 0 and scale. Defaults to 0.

Storage Examples

Further to the explanation above, the DBMS will store NUMERIC data according the declared precision
and scale. Some more examples are:

NUMERIC(4) stored as SMALLINT (exact data)
NUMERIC(4,2) SMALLINT (data * 10 2)
NUMERIC(10,4) (Dialect 1) DOUBLE PRECISION
Ê (Dialect 3) BIGINT (data * 10 4)

#

Always keep in mind that the storage format depends on the precision. For
instance, you define the column type as NUMERIC(2,2) presuming that its range of
values will be -0.99É0.99. However, the actual range of values for the column will
be -327.68..327.67, which is due to storing the NUMERIC(2,2) data type in the
SMALLINT format. In storage, the NUMERIC(4,2), NUMERIC(3,2) and NUMERIC(2,2) data
types are the same, in fact. It means that if you really want to store data in a
column with the NUMERIC(2,2) data type and limit the range to -0.99É0.99, you will
have to create a constraint for it.

3.3.2. DECIMAL

Data Declaration Format

Ê DECIMAL
| DECIMAL(precision)
| DECIMAL(precision , scale)

Table 4. DECIMAL Type Parameters

Parameter Description

precision Precision, between 1 and 18. Defaults to 9.

scale Scale, between 0 and scale. Defaults to 0.

Storage Examples

The storage format in the database for DECIMAL is very similar to NUMERIC, with some differences that
are easier to observe with the help of some more examples:

DECIMAL(4) stored as INTEGER (exact data)
DECIMAL(4,2) INTEGER (data * 10 2)
DECIMAL(10,4) (Dialect 1) DOUBLE PRECISION
Ê (Dialect 3) BIGINT (data * 10 4)

Chapter 3. Data Types and Subtypes

30

3.4. Data Types for Dates and Times
The DATE, TIME and TIMESTAMP data types are used to work with data containing dates and times.
Dialect 3 supports all the three types, while Dialect 1 has only DATE. The DATE type in Dialect 3 is
Òdate-onlyÓ, whereas the Dialect 1 DATE type stores both date and time-of-day, equivalent to
TIMESTAMP in Dialect 3. Dialect 1 has no Òdate-onlyÓ type.

! Dialect 1 DATE data can be defined alternatively as TIMESTAMP and this is
recommended for new definitions in Dialect 1 databases.

Fractions of Seconds

If fractions of seconds are stored in date and time data types, Firebird stores them to ten-
thousandths of a second. If a lower granularity is preferred, the fraction can be specified explicitly
as thousandths, hundredths or tenths of a second in Dialect 3 databases of ODS 11 or higher.

!

Some useful knowledge about subseconds precision:

The time-part of a TIME or TIMESTAMP is a 4-byte WORD, with room for
decimilliseconds precision and time values are stored as the number of deci-
milliseconds elapsed since midnight. The actual precision of values stored in or
read from time(stamp) functions and variables is:

¥ CURRENT_TIME defaults to seconds precision and can be specified up to
milliseconds precision with CURRENT_TIME (0|1|2|3)

¥ CURRENT_TIMESTAMP milliseconds precision. Precision from seconds to
milliseconds can be specified with CURRENT_TIMESTAMP (0|1|2|3)

¥ Literal 'NOW': milliseconds precision

¥ Functions DATEADD() and DATEDIFF() support up to milliseconds precision. Deci-
milliseconds can be specified but they are rounded to the nearest integer
before any operation is performed

¥ The EXTRACT() function returns up to deci-milliseconds precision with the
SECOND and MILLISECOND arguments

¥ For TIME and TIMESTAMP literals , Firebird happily accepts up to deci-
milliseconds precision, but truncates (not rounds) the time part to the nearest
lower or equal millisecond. Try, for example, SELECT TIME '14:37:54.1249' FROM
rdb$database

¥ the Ô+Õ and Ô- Õ operators work with deci-milliseconds precision, but only within
the expression. As soon as something is stored or even just SELECTed from
RDB$DATABASE, it reverts to milliseconds precision

Deci-milliseconds precision is rare and is not currently stored in columns or
variables. The best assumption to make from all this is that, although Firebird
stores TIME and the TIMESTAMP time-part values as the number of deci-milliseconds
(10-4 seconds) elapsed since midnight, the actual precision could vary from seconds
to milliseconds.

Chapter 3. Data Types and Subtypes

31

3.4.1. DATE

The DATE data type in Dialect 3 stores only date without time. The available range for storing data is
from January 01, 1 to December 31, 9999.

Dialect 1 has no Òdate-onlyÓ type.

!

In Dialect 1, date literals without a time part, as well as 'TODAY', 'YESTERDAY' and
'TOMORROW' automatically get a zero time part.

If, for some reason, it is important to you to store a Dialect 1 timestamp literal with
an explicit zero time-part, the engine will accept a literal like '2016-12-25
00:00:00.0000' . However, '2016-12-25' would have precisely the same effect, with
fewer keystrokes!

3.4.2. TIME

The TIME data type is available in Dialect 3 only. It stores the time of day within the range from
00:00:00.0000 to 23:59:59.9999.

If you need to get the time-part from DATE in Dialect 1, you can use the EXTRACT function.

Examples Using EXTRACT()

EXTRACT (HOUR FROM DATE_FIELD)
EXTRACT (MINUTE FROM DATE_FIELD)
EXTRACT (SECOND FROM DATE_FIELD)

See also the EXTRACT() function in the chapter entitled Built-in Functions .

3.4.3. TIMESTAMP

The TIMESTAMP data type is available in Dialect 3 and Dialect 1. It comprises two 32-bit words!Ñ!a
date-part and a time-part!Ñ!to form a structure that stores both date and time-of-day. It is the same
as the DATE type in Dialect 1.

The EXTRACT function works equally well with TIMESTAMP as with the Dialect 1 DATE type.

3.4.4. Operations Using Date and Time Values

The method of storing date and time values makes it possible to involve them as operands in some
arithmetic operations. In storage, a date value or date-part of a timestamp is represented as the
number of days elapsed since Òdate zeroÓ!Ñ!November 17, 1898!Ñ!whilst a time value or the time-
part of a timestamp is represented as the number of seconds (with fractions of seconds taken into
account) since midnight.

An example is to subtract an earlier date, time or timestamp from a later one, resulting in an
interval of time, in days and fractions of days.

Chapter 3. Data Types and Subtypes

32

Table 5. Arithmetic Operations for Date and Time Data Types

Operand 1 Operation Operand 2 Result

DATE + TIME TIMESTAMP

DATE + Numeric value n DATE increased by n whole days.
Broken values are rounded (not
floored) to the nearest integer

TIME + DATE TIMESTAMP

TIME + Numeric value n TIME increased by n seconds. The
fractional part is taken into account

TIMESTAMP + Numeric value n TIMESTAMP, where the date will advance
by the number of days and part of a
day represented by number n!Ñ!so Ò+
2.75Ó will push the date forward by 2
days and 18 hours

DATE - DATE Number of days elapsed, within the
range DECIMAL(9, 0)

DATE - Numeric value n DATE reduced by n whole days. Broken
values are rounded (not floored) to the
nearest integer

TIME - TIME Number of seconds elapsed, within the
range DECIMAL(9, 4)

TIME - Numeric value n TIME reduced by n seconds. The
fractional part is taken into account

TIMESTAMP - TIMESTAMP Number of days and part-day, within
the range DECIMAL(18, 9)

TIMESTAMP - Numeric value n TIMESTAMP where the date will decrease
by the number of days and part of a
day represented by number n!Ñ!so Ò-
2.25Ó will decrease the date by 2 days
and 6 hours

! Notes

The DATE type is considered as TIMESTAMP in Dialect 1.

See also

DATEADD, DATEDIFF

3.5. Character Data Types
For working with character data, Firebird has the fixed-length CHAR and the variable-length VARCHAR
data types. The maximum size of text data stored in these data types is 32,767 bytes for CHAR and
32,765 bytes for VARCHAR. The maximum number of characters that will fit within these limits

Chapter 3. Data Types and Subtypes

33

depends on the CHARACTER SET being used for the data under consideration. The collation sequence
does not affect this maximum, although it may affect the maximum size of any index that involves
the column.

If no character set is explicitly specified when defining a character object, the default character set
specified when the database was created will be used. If the database does not have a default
character set defined, the field gets the character set NONE.

3.5.1. Unicode

Most current development tools support Unicode, implemented in Firebird with the character sets
UTF8 and UNICODE_FSS. UTF8 comes with collations for many languages. UNICODE_FSS is more limited
and is used mainly by Firebird internally for storing metadata. Keep in mind that one UTF8
character occupies up to 4 bytes, thus limiting the size of CHAR fields to 8,191 characters (32,767/4).

!
The actual Òbytes per characterÓ value depends on the range the character belongs
to. Non-accented Latin letters occupy 1 byte, Cyrillic letters from the WIN1251
encoding occupy 2 bytes in UTF8, characters from other encodings may occupy up
to 4 bytes.

The UTF8 character set implemented in Firebird supports the latest version of the Unicode standard,
thus recommending its use for international databases.

3.5.2. Client Character Set

While working with strings, it is essential to keep the character set of the client connection in mind.
If there is a mismatch between the character sets of the stored data and that of the client
connection, the output results for string columns are automatically re-encoded, both when data are
sent from the client to the server and when they are sent back from the server to the client. For
example, if the database was created in the WIN1251 encoding but KOI8R or UTF8 is specified in the
clientÕs connection parameters, the mismatch will be transparent.

3.5.3. Special Character Sets

Character set NONE

The character set NONE is a special character set in Firebird. It can be characterized such that each
byte is a part of a string, but the string is stored in the system without any clues about what
constitutes any character: character encoding, collation, case, etc. are simply unknown. It is the
responsibility of the client application to deal with the data and provide the means to interpret the
string of bytes in some way that is meaningful to the application and the human user.

Character set OCTETS

Data in OCTETS encoding are treated as bytes that may not actually be interpreted as characters.
OCTETS provides a way to store binary data, which could be the results of some Firebird functions.
The database engine has no concept of what it is meant to do with a string of bits in OCTETS, other
than just store it and retrieve it. Again, the client side is responsible for validating the data,
presenting them in formats that are meaningful to the application and its users and handling any
exceptions arising from decoding and encoding them.

Chapter 3. Data Types and Subtypes

34

3.5.4. Collation Sequence

Each character set has a default collation sequence (COLLATE) that specifies the collation order.
Usually, it provides nothing more than ordering based on the numeric code of the characters and a
basic mapping of upper- and lower-case characters. If some behaviour is needed for strings that is
not provided by the default collation sequence and a suitable alternative collation is supported for
that character set, a COLLATE collation clause can be specified in the column definition.

A COLLATE collation clause can be applied in other contexts besides the column definition. For
greater-than/less-than comparison operations, it can be added in the WHERE clause of a SELECT
statement. If output needs to be sorted in a special alphabetic sequence, or case-insensitively, and
the appropriate collation exists, then a COLLATE clause can be included with the ORDER BY clause
when rows are being sorted on a character field and with the GROUP BY clause in case of grouping
operations.

Case-Insensitive Searching

For a case-insensitive search, the UPPER function could be used to convert both the search argument
and the searched strings to upper-case before attempting a match:

É
where upper(name) = upper(:flt_name)

For strings in a character set that has a case-insensitive collation available, you can simply apply
the collation, to compare the search argument and the searched strings directly. For example, using
the WIN1251 character set, the collation PXW_CYRL is case-insensitive for this purpose:

É
WHERE FIRST_NAME COLLATE PXW_CYRL >= :FLT_NAME
É
ORDER BY NAME COLLATE PXW_CYRL

See also

CONTAINING

UTF8 Collation Sequences

The following table shows the possible collation sequences for the UTF8 character set.

Table 6. Collation Sequences for Character Set UTF8

Collation Characteristics

UCS_BASIC Collation works according to the position of the character in the table
(binary). Added in Firebird 2.0

UNICODE Collation works according to the UCA algorithm (Unicode Collation
Algorithm) (alphabetical). Added in Firebird 2.0

Chapter 3. Data Types and Subtypes

35

Collation Characteristics

UTF8 The default, binary collation, identical to UCS_BASIC, which was added for
SQL compatibility

UNICODE_CI Case-insensitive collation, works without taking character case into
account. Added in Firebird 2.1

UNICODE_CI_AI Case-insensitive, accent-insensitive collation, works alphabetically
without taking character case or accents into account. Added in Firebird
2.5

Example

An example of collation for the UTF8 character set without taking into account the case or
accentuation of characters (similar to COLLATE PXW_CYRL).

...
ORDER BY NAME COLLATE UNICODE_CI_AI

3.5.5. Character Indexes

In Firebird earlier than version 2.0, a problem can occur with building an index for character
columns that use a non-standard collation sequence: the length of an indexed field is limited to 252
bytes with no COLLATE specified or 84 bytes if COLLATE is specified. Multi-byte character sets and
compound indexes limit the size even further.

Starting from Firebird 2.0, the maximum length for an index equals one quarter of the page size, i.e.
from 1,024!Ñ!for page size 4,096!Ñ!to 4,096 bytes!Ñ!for page size 16,384. The maximum length of an
indexed string is 9 bytes less than that quarter-page limit.

Calculating Maximum Length of an Indexed String Field

The following formula calculates the maximum length of an indexed string (in characters):

max_char_length = FLOOR((page_size / 4 - 9) / N)

where N is the number of bytes per character in the character set.

The table below shows the maximum length of an indexed string (in characters), according to page
size and character set, calculated using this formula.

Table 7. Maximum Index Lengths by Page Size and Character Size

Page Size Bytes per character

1 2 3 4 6

4,096 1,015 507 338 253 169

8,192 2,039 1,019 679 509 339

16,384 4,087 2,043 1,362 1,021 682

Chapter 3. Data Types and Subtypes

36

!
With case-insensitive collations (Ò_CIÓ), one character in the index will occupy not
4, but 6 (six) bytes, so the maximum key length for a page of!Ñ!for example!Ñ!4,096
bytes, will be 169 characters.

See also

CREATE DATABASE, Collation sequence , SELECT, WHERE, GROUP BY, ORDER BY

3.5.6. Character Types in Detail

CHAR

CHAR is a fixed-length data type. If the entered number of characters is less than the declared length,
trailing spaces will be added to the field. Generally, the pad character does not have to be a space: it
depends on the character set. For example, the pad character for the OCTETS character set is zero.

The full name of this data type is CHARACTER, but there is no requirement to use full names and
people rarely do so.

Fixed-length character data can be used to store codes whose length is standard and has a definite
ÒwidthÓ in directories. An example of such a code is an EAN13 barcode!Ñ!13 characters, all filled.

Declaration Syntax

{ CHAR | CHARACTER } [(length)]
Ê [CHARACTER SET <set>] [COLLATE <name>]

!
If no length is specified, it is taken to be 1.

A valid length is from 1 to the maximum number of characters that can be
accommodated within 32,767 bytes.

VARCHAR

VARCHAR is the basic string type for storing texts of variable length, up to a maximum of 32,765 bytes.
The stored structure is equal to the actual size of the data plus 2 bytes where the length of the data
is recorded.

All characters that are sent from the client application to the database are considered meaningful,
including the leading and trailing spaces. However, trailing spaces are not stored: they will be
restored upon retrieval, up to the recorded length of the string.

The full name of this type is CHARACTER VARYING. Another variant of the name is written as CHAR
VARYING.

Syntax

{ VARCHAR | CHAR VARYING | CHARACTER VARYING } (length)
Ê [CHARACTER SET <set>] [COLLATE <name>]

Chapter 3. Data Types and Subtypes

37

NCHAR

NCHAR is a fixed-length character data type with the ISO8859_1 character set predefined. In all other
respects it is the same as CHAR.

Syntax

{ NCHAR | NATIONAL { CHAR | CHARACTER } } [(length)]

A similar data type is available for the variable-length string type: NATIONAL CHARACTER VARYING.

3.6. Binary Data Types
BLOBs (Binary Large Objects) are complex structures used to store text and binary data of an
undefined length, often very large.

Syntax

BLOB [SUB_TYPE <subtype>]
Ê [SEGMENT SIZE <segment size>]
Ê [CHARACTER SET <character set>]
Ê [COLLATE <collation name>]

Shortened syntax

BLOB (<segment size>)
BLOB (<segment size>, <subtype>)
BLOB (, <subtype>)

Segment Size

Specifying the BLOB segment is throwback to times past, when applications for working with BLOB
data were written in C (Embedded SQL) with the help of the gpre pre-compiler. Nowadays, it is
effectively irrelevant. The segment size for BLOB data is determined by the client side and is
usually larger than the data page size, in any case.

3.6.1. BLOB Subtypes

The optional SUB_TYPE parameter specifies the nature of data written to the column. Firebird
provides two pre-defined subtypes for storing user data:

Subtype 0: BINARY

If a subtype is not specified, the specification is assumed to be for untyped data and the default
SUB_TYPE 0 is applied. The alias for subtype zero is BINARY. This is the subtype to specify when the
data are any form of binary file or stream: images, audio, word-processor files, PDFs and so on.

Subtype 1: TEXT

Subtype 1 has an alias, TEXT, which can be used in declarations and definitions. For instance, BLOB
SUB_TYPE TEXT. It is a specialized subtype used to store plain text data that is too large to fit into a

Chapter 3. Data Types and Subtypes

38

string type. A CHARACTER SET may be specified, if the field is to store text with a different encoding
to that specified for the database. From Firebird 2.0, a COLLATE clause is also supported.

Specifying a CHARACTER SET without SUB_TYPE implies SUB_TYPE TEXT.

Custom Subtypes

It is also possible to add custom data subtypes, for which the range of enumeration from -1 to
-32,768 is reserved. Custom subtypes enumerated with positive numbers are not allowed, as the
Firebird engine uses the numbers from 2-upward for some internal subtypes in metadata.

3.6.2. BLOB Specifics

Size

The maximum size of a BLOB field is limited to 4GB, regardless of whether the server is 32-bit or 64-
bit. (The internal structures related to BLOBs maintain their own 4-byte counters.) For a page size of
4 KB (4096 bytes) the maximum size is lower!Ñ!slightly less than 2GB.

Operations and Expressions

Text BLOBs of any length and any character set!Ñ!including multi-byte!Ñ!can be operands for
practically any statement or internal functions. The following operators are supported completely:

= (assignment)

=, <>, <, #, >, >= (comparison)

|| (concatenation)

BETWEEN, IS [NOT] DISTINCT FROM,

IN, ANY | SOME,

ALL Ê

Partial support:

¥ An error occurs with these if the search argument is larger than or equal to 32 KB:

STARTING [WITH], LIKE,

CONTAINING Ê

¥ Aggregation clauses work not on the contents of the field itself, but on the BLOB ID. Aside from
that, there are some quirks:

SELECT
DISTINCT

returns several NULL values by mistake if they are present

ORDER BY !Ñ!

GROUP BY concatenates the same strings if they are adjacent to each other, but does not do
it if they are remote from each other

BLOB Storage

Chapter 3. Data Types and Subtypes

39

¥ By default, a regular record is created for each BLOB and it is stored on a data page that is
allocated for it. If the entire BLOB fits onto this page, it is called a level 0 BLOB. The number of
this special record is stored in the table record and occupies 8 bytes.

¥ If a BLOB does not fit onto one data page, its contents are put onto separate pages allocated
exclusively to it (blob pages), while the numbers of these pages are stored into the BLOB record.
This is a level 1 BLOB.

¥ If the array of page numbers containing the BLOB data does not fit onto a data page, the array is
put on separate blob pages, while the numbers of these pages are put into the BLOB record. This
is a level 2 BLOB.

¥ Levels higher than 2 are not supported.

See also

FILTER, DECLARE FILTER

3.6.3. ARRAY Type

The support of arrays in the Firebird DBMS is a departure from the traditional relational model.
Supporting arrays in the DBMS could make it easier to solve some data-processing tasks involving
large sets of similar data.

Arrays in Firebird are stored in BLOB of a specialized type. Arrays can be one-dimensional and
multidimensional and of any data type except BLOB and ARRAY.

Example

CREATE TABLE SAMPLE_ARR (
Ê ID INTEGER NOT NULL PRIMARY KEY,
Ê ARR_INT INTEGER [4]
);

This example will create a table with a field of the array type consisting of four integers. The
subscripts of this array are from 1 to 4.

Specifying Explicit Boundaries for Dimensions

By default, dimensions are 1-based!Ñ!subscripts are numbered from 1. To specify explicit upper
and lower bounds of the subscript values, use the following syntax:

'[' <lower>:<upper> ']'

Adding More Dimensions

A new dimension is added using a comma in the syntax. In this example we create a table with a
two-dimensional array, with the lower bound of subscripts in both dimensions starting from zero:

Chapter 3. Data Types and Subtypes

40

CREATE TABLE SAMPLE_ARR2 (
Ê ID INTEGER NOT NULL PRIMARY KEY,
Ê ARR_INT INTEGER [0:3, 0:3]
);

The DBMS does not offer much in the way of language or tools for working with the contents of
arrays. The database employee.fdb, found in the ../examples/empbuild directory of any Firebird
distribution package, contains a sample stored procedure showing some simple work with arrays:

PSQL Source for SHOW_LANGS, a procedure involving an array

CREATE OR ALTER PROCEDURE SHOW_LANGS (
Ê CODE VARCHAR(5),
Ê GRADE SMALLINT,
Ê CTY VARCHAR(15))
RETURNS (LANGUAGES VARCHAR(15))
AS
Ê DECLARE VARIABLE I INTEGER;
BEGIN
Ê I = 1;
Ê WHILE (I <= 5) DO
Ê BEGIN
Ê SELECT LANGUAGE_REQ[:I]
Ê FROM JOB
Ê WHERE (JOB_CODE = :CODE)
Ê AND (JOB_GRADE = :GRADE)
Ê AND (JOB_COUNTRY = :CTY)
Ê AND (LANGUAGE_REQ IS NOT NULL))
Ê INTO :LANGUAGES;

Ê IF (LANGUAGES = '') THEN
Ê /* PRINTS 'NULL' INSTEAD OF BLANKS */
Ê LANGUAGES = 'NULL';
Ê I = I +1;
Ê SUSPEND;
Ê END
END

If the features described are enough for your tasks, you might consider using arrays in your
projects. Currently, no improvements are planned to enhance support for arrays in Firebird.

3.7. Special Data Types
ÒSpecialÓ data types É

Chapter 3. Data Types and Subtypes

41

3.7.1. SQL_NULL Data Type

The SQL_NULL type holds no data, but only a state: NULL or NOT NULL. It is not available as a data type
for declaring table fields, PSQL variables or parameter descriptions. It was added to support the use
of untyped parameters in expressions involving the IS NULL predicate.

An evaluation problem occurs when optional filters are used to write queries of the following type:

WHERE col1 = :param1 OR :param1 IS NULL

After processing, at the API level, the query will look like this:

WHERE col1 = ? OR ? IS NULL

This is a case where the developer writes an SQL query and considers :param1 as though it were a
variable that he can refer to twice. However, at the API level, the query contains two separate and
independent _parameters . The server cannot determine the type of the second parameter since it
comes in association with IS NULL.

The SQL_NULL data type solves this problem. Whenever the engine encounters an Ò ? IS NULLÓ
predicate in a query, it assigns the SQL_NULL type to the parameter, which will indicate that
parameter is only about ÒnullnessÓ and the data type or the value need not be addressed.

The following example demonstrates its use in practice. It assumes two named parameters!Ñ!say,
:size and :colour !Ñ!which might, for example, get values from on-screen text fields or drop-down
lists. Each named parameter corresponds with two positional parameters in the query.

SELECT
Ê SH.SIZE, SH.COLOUR, SH.PRICE
FROM SHIRTS SH
WHERE (SH.SIZE = ? OR ? IS NULL)
Ê AND (SH.COLOUR = ? OR ? IS NULL)

Explaining what happens here assumes the reader is familiar with the Firebird API and the passing
of parameters in XSQLVAR structures!Ñ!what happens under the surface will not be of interest to
those who are not writing drivers or applications that communicate using the ÒnakedÓ API.

The application passes the parameterized query to the server in the usual positional ?-form. Pairs of
ÒidenticalÓ parameters cannot be merged into one so, for two optional filters, for example, four
positional parameters are needed: one for each ? in our example.

After the call to isc_dsql_describe_bind() , the SQLTYPE of the second and fourth parameters will be
set to SQL_NULL. Firebird has no knowledge of their special relation with the first and third
parameters: that responsibility lies entirely on the application side.

Once the values for size and colour have been set (or left unset) by the user and the query is about
to be executed, each pair of XSQLVARs must be filled as follows:

Chapter 3. Data Types and Subtypes

42

User has supplied a value

First parameter (value compare): set *sqldata to the supplied value and *sqlind to 0 (for NOT
NULL)

Second parameter (NULL test): set sqldata to null (null pointer, not SQL NULL) and *sqlind to 0 (for
NOT NULL)

User has left the field blank

Both parameters: set sqldata to null (null pointer, not SQL NULL) and *sqlind to -1 (indicating
NULL)

In other words: The value compare parameter is always set as usual. The SQL_NULL parameter is set
the same, except that sqldata remains null at all times.

3.8. Conversion of Data Types
When composing an expression or specifying an operation, the aim should be to use compatible
data types for the operands. When a need arises to use a mixture of data types, it should prompt
you to look for a way to convert incompatible operands before subjecting them to the operation.
The ability to convert data may well be an issue if you are working with Dialect 1 data.

3.8.1. Explicit Data Type Conversion

The CAST function enables explicit conversion between many pairs of data types.

Syntax

CAST ({ <value> | NULL } AS <data_type>)

<data_type> ::=
Ê <sql_datatype>
Ê | [TYPE OF] domain
Ê | TYPE OF COLUMN relname. colname

Casting to a Domain

When you cast to a domain, any constraints declared for it are taken into account, i.e., NOT NULL or
CHECK constraints. If the value does not pass the check, the cast will fail.

If TYPE OF is additionally specified!Ñ!casting to its base type!Ñ!any domain constraints are ignored
during the cast. If TYPE OF is used with a character type (CHAR/VARCHAR), the character set and
collation are retained.

Casting to TYPE OF COLUMN

When operands are cast to the type of a column, the specified column may be from a table or a
view.

Only the type of the column itself is used. For character types, the cast includes the character set,

Chapter 3. Data Types and Subtypes

43

but not the collation. The constraints and default values of the source column are not applied.

Example

CREATE TABLE TTT (
Ê S VARCHAR (40)
Ê CHARACTER SET UTF8 COLLATE UNICODE_CI_AI
);
COMMIT;

SELECT
Ê CAST ('I have many friends' AS TYPE OF COLUMN TTT.S)
FROM RDB$DATABASE;

Conversions Possible for the CAST Function

Table 8. Conversions with CAST

From Data Type To Data Type

Numeric types Numeric types, [VAR]CHAR, BLOB

[VAR]CHAR [VAR]CHAR, BLOB, Numeric types, DATE, TIME, TIMESTAMP

BLOB [VAR]CHAR, BLOB, Numeric types, DATE, TIME, TIMESTAMP

DATE, TIME [VAR]CHAR, BLOB, TIMESTAMP

TIMESTAMP [VAR]CHAR, BLOB, DATE, TIME

" Keep in mind that partial information loss is possible. For instance, when you cast
the TIMESTAMP data type to the DATE data type, the time-part is lost.

Literal Formats

To cast string data types to the DATE, TIME or TIMESTAMP data types, you need the string argument to
be one of the predefined date and time literals (see Table 9) or a representation of the date in one of
the allowed date-time literal formats:

Chapter 3. Data Types and Subtypes

44

<timestamp_format> ::=
Ê { [YYYY<p>]MM<p>DD[<p>HH[<p>mm[<p>SS[<p>NNNN]]]]
Ê | MM<p>DD[<p>YYYY[<p>HH[<p>mm[<p>SS[<p>NNNN]]]]]
Ê | DD<p>MM[<p>YYYY[<p>HH[<p>mm[<p>SS[<p>NNNN]]]]]
Ê | MM<p>DD[<p>YY[<p>HH[<p>mm[<p>SS[<p>NNNN]]]]]
Ê | DD<p>MM[<p>YY[<p>HH[<p>mm[<p>SS[<p>NNNN]]]]]
Ê | NOW
Ê | TODAY
Ê | TOMORROW
Ê | YESTERDAY }

<date_format> ::=
Ê { [YYYY<p>]MM<p>DD
Ê | MM<p>DD[<p>YYYY]
Ê | DD<p>MM[<p>YYYY]
Ê | MM<p>DD[<p>YY]
Ê | DD<p>MM[<p>YY]
Ê | TODAY
Ê | TOMORROW
Ê | YESTERDAY }

<time_format> :=
Ê { HH[<p>mm[<p>SS[<p>NNNN]]]
Ê | NOW }

<p> ::= whitespace | . | : | , | - | /

Table 9. Date and Time Literal Format Arguments

Argument Description

timestamp_format Format of timestamp literal

date_literal Format of date literal

time_literal Format of time literal

YYYY Four-digit year

YY Two-digit year

MM Month. It may contain 1 or 2 digits (1-12 or 01-12). You can
also specify the three-letter shorthand name or the full
name of a month in English. Case-insensitive

DD Day. It may contain 1 or 2 digits (1-31 or 01-31)

HH Hour. It may contain 1 or 2 digits (0-23 or 00-23)

mm Minutes. It may contain 1 or 2 digits (0-59 or 00-59)

SS Seconds. It may contain 1 or 2 digits (0-59 or 00-59)

NNNN Ten-thousandths of a second. It may contain from 1 to 4
digits (0-9999)

Chapter 3. Data Types and Subtypes

45

Argument Description

p A separator, any of permitted characters. Leading and
trailing spaces are ignored

Table 10. Literals with Predefined Values of Date and Time

Literal Description Data Type

Dialect 1 Dialect 3

'NOW' Current date and time DATE TIMESTAMP

'TODAY' Current date DATE with zero time DATE

'TOMORROW' Current date + 1 (day) DATE with zero time DATE

'YESTERDAY' Current date - 1 (day) DATE with zero time DATE

" Use of the complete specification of the year in the four-digit form!Ñ! YYYY!Ñ!is
strongly recommended, to avoid confusion in date calculations and aggregations.

Chapter 3. Data Types and Subtypes

46

Sample Date Literal Interpretations

select
Ê cast('04.12.2014' as date) as d1, -- DD.MM.YYYY
Ê cast('04 12 2014' as date) as d2, -- MM DD YYYY
Ê cast('4-12-2014' as date) as d3, -- MM-DD-YYYY
Ê cast('04/12/2014' as date) as d4, -- MM/DD/YYYY
Ê cast('04,12,2014' as date) as d5, -- MM,DD,YYYY
Ê cast('04.12.14' as date) as d6, -- DD.MM.YY
Ê -- DD.MM with current year
Ê cast('04.12' as date) as d7,
Ê -- MM/DD with current year
Ê cast('04/12' as date) as d8,
Ê cast('2014/12/04' as date) as d9, -- YYYY/MM/DD
Ê cast('2014 12 04' as date) as d10, -- YYYY MM DD
Ê cast('2014.12.04' as date) as d11, -- YYYY.MM.DD
Ê cast('2014-12-04' as date) as d12, -- YYYY-MM-DD
Ê cast('4 Jan 2014' as date) as d13, -- DD MM YYYY
Ê cast('2014 Jan 4' as date) as dt14, -- YYYY MM DD
Ê cast('Jan 4, 2014' as date) as dt15, -- MM DD, YYYY
Ê cast('11:37' as time) as t1, -- HH:mm
Ê cast('11:37:12' as time) as t2, -- HH:mm:ss
Ê cast('11:31:12.1234' as time) as t3, -- HH:mm:ss.nnnn
Ê cast('11.37.12' as time) as t4, -- HH.mm.ss
Ê -- DD.MM.YYYY HH:mm
Ê cast('04.12.2014 11:37' as timestamp) as dt1,
Ê -- MM/DD/YYYY HH:mm:ss
Ê cast('04/12/2014 11:37:12' as timestamp) as dt2,
Ê -- DD.MM.YYYY HH:mm:ss.nnnn
Ê cast('04.12.2014 11:31:12.1234' as timestamp) as dt3,
Ê -- MM/DD/YYYY HH.mm.ss
Ê cast('04/12/2014 11.37.12' as timestamp) as dt4
from rdb$database

Shorthand Casts for Date and Time Data Types

Firebird allows the use of a shorthand ÒC-styleÓ type syntax for casts from string to the types DATE,
TIME and TIMESTAMP.

Syntax

<data_type> ' date_literal_string '

Chapter 3. Data Types and Subtypes

47

Example

-- 1
Ê UPDATE PEOPLE
Ê SET AGECAT = 'SENIOR'
Ê WHERE BIRTHDATE < DATE '1-Jan-1943';
-- 2
Ê INSERT INTO APPOINTMENTS
Ê (EMPLOYEE_ID, CLIENT_ID, APP_DATE, APP_TIME)
Ê VALUES (973, 8804, DATE 'today' + 2, TIME '16:00');
-- 3
Ê NEW.LASTMOD = TIMESTAMP 'now';

!

These shorthand expressions are evaluated directly during parsing, as though the
statement were already prepared for execution. Thus, even if the query is run
several times, the value of, for instance, timestamp 'now' remains the same no
matter how much time passes.

If you need the time to be evaluated at each execution, use the full CAST syntax. An
example of using such an expression in a trigger:

NEW.CHANGE_DATE = CAST('now' AS TIMESTAMP);

3.8.2. Implicit Data Type Conversion

Implicit data conversion is not possible in Dialect 3!Ñ!the CAST function is almost always required to
avoid data type clashes.

In Dialect 1, in many expressions, one type is implicitly cast to another without the need to use the
CAST function. For instance, the following statement in Dialect 1 is valid:

UPDATE ATABLE
Ê SET ADATE = '25.12.2016' + 1

and the date literal will be cast to the date type implicitly.

In Dialect 3, this statement will throw error 35544569, ÒDynamic SQL Error: expression evaluation
not supported, Strings cannot be added or subtracted in dialect 3Ó!Ñ!a cast will be needed:

UPDATE ATABLE
Ê SET ADATE = CAST ('25.12.2016' AS DATE) + 1

or, with the short cast:

Chapter 3. Data Types and Subtypes

48

UPDATE ATABLE
Ê SET ADATE = DATE '25.12.2016' + 1

In Dialect 1, mixing integer data and numeric strings is usually possible because the parser will try
to cast the string implicitly. For example,

2 + '1'

will be executed correctly.

In Dialect 3, an expression like this will raise an error, so you will need to write it as a CAST
expression:

2 + CAST('1' AS SMALLINT)

The exception to the rule is during string concatenation .

Implicit Conversion During String Concatenation

When multiple data elements are being concatenated, all non-string data will undergo implicit
conversion to string, if possible.

Example

SELECT 30||' days hath September, April, June and November' CONCAT$
Ê FROM RDB$DATABASE;

CONCAT$
--
30 days hath September, April, June and November

3.9. Custom Data Types!Ñ!Domains
In Firebird, the concept of a Òuser-defined data typeÓ is implemented in the form of the domain .
Creating a domain does not truly create a new data type, of course. A domain provides the means to
encapsulate an existing data type with a set of attributes and make this ÒcapsuleÓ available for
multiple usage across the whole database. If several tables need columns defined with identical or
nearly identical attributes, a domain makes sense.

Domain usage is not limited to column definitions for tables and views. Domains can be used to
declare input and output parameters and variables in PSQL code.

3.9.1. Domain Attributes

A domain definition contains required and optional attributes. The data type is a required attribute.
Optional attributes include:

Chapter 3. Data Types and Subtypes

49

¥ a default value

¥ to allow or forbid NULL

¥ CHECK constraints

¥ character set (for character data types and text BLOB fields)

¥ collation (for character data types)

Sample domain definition

CREATE DOMAIN BOOL3 AS SMALLINT
Ê CHECK (VALUE IS NULL OR VALUE IN (0, 1));

See also

Explicit Data Type Conversion for the description of differences in the data conversion mechanism
when domains are specified for the TYPE OF and TYPE OF COLUMN modifiers.

3.9.2. Domain Override

While defining a column using a domain, it is possible to override some of the attributes inherited
from the domain. Table 3.9 summarises the rules for domain override.

Table 11. Rules for Overriding Domain Attributes in Column Definition

Attribute Override? Comments

Data type No Ê

Default value Yes Ê

Text character set Yes It can be also used to restore the default
database values for the column

Text collation sequence Yes Ê

CHECK constraints Yes To add new conditions to the check, you can use
the corresponding CHECK clauses in the CREATE
and ALTER statements at the table level.

NOT NULL No Often it is better to leave domain nullable in its
definition and decide whether to make it NOT
NULL when using the domain to define columns.

3.9.3. Creating and Administering Domains

A domain is created with the DDL statement CREATE DOMAIN.

Chapter 3. Data Types and Subtypes

50

Short Syntax

CREATE DOMAIN name [AS] <type>
Ê [DEFAULT {<const> | <literal> | NULL | <context_var>}]
Ê [NOT NULL] [CHECK (<condition>)]
Ê [COLLATE <collation>]

See also

CREATE DOMAIN in the Data Definition Language (DDL) section.

Altering a Domain

To change the attributes of a domain, use the DDL statement ALTER DOMAIN. With this statement you
can:

¥ rename the domain

¥ change the data type

¥ delete the current default value

¥ set a new default value

¥ delete an existing CHECK constraint

¥ add a new CHECK constraint

Short Syntax

ALTER DOMAIN name
Ê [{TO <new_name>}]
Ê [{SET DEFAULT {<literal> | NULL | <context_var>} |
Ê DROP DEFAULT}]
Ê [{ADD [CONSTRAINT] CHECK (<dom_condition>) |
Ê DROP CONSTRAINT}]
Ê [{TYPE <datatype>}]

When planning to alter a domain, its dependencies must be taken into account: whether there are
table columns, any variables, input and/or output parameters with the type of this domain declared
in the PSQL code. If you change domains in haste, without carefully checking them, your code may
stop working!

"
When you convert data types in a domain, you must not perform any conversions
that may result in data loss. Also, for example, if you convert VARCHAR to INTEGER,
check carefully that all data using this domain can be successfully converted.

See also

ALTER DOMAIN in the Data Definition Language (DDL) section.

Chapter 3. Data Types and Subtypes

51

Deleting (Dropping) a Domain

The DDL statement DROP DOMAIN deletes a domain from the database, provided it is not in use by any
other database objects.

Syntax

DROP DOMAIN name

" Any user connected to the database can delete a domain.

Example

DROP DOMAIN Test_Domain

See also

DROP DOMAIN in the Data Definition Language (DDL) section.

Chapter 3. Data Types and Subtypes

52

Chapter 4. Common Language Elements
This chapter covers the elements that are common throughout the implementation of the SQL
language!Ñ!the expressions that are used to extract and operate on assertions about data and the
predicates that test the truth of those assertions.

4.1. Expressions
SQL expressions provide formal methods for evaluating, transforming and comparing values. SQL
expressions may include table columns, variables, constants, literals, various statements and
predicates and also other expressions. The complete list of possible tokens in expressions follows.

Description of Expression Elements

Column name

Identifier of a column from a specified table used in evaluations or as a search condition. A
column of the array type cannot be an element in an expression except when used with the IS
[NOT] NULL predicate.

Array element

An expression may contain a reference to an array member i.e., <array_name>[s] , where s is the
subscript of the member in the array <array_name>

Arithmetic operators

The +, - , * , / characters used to calculate values

Concatenation operator

The || (Òdouble-pipeÓ) operator used to concatenate strings

Logical operators

The reserved words NOT, AND and OR, used to combine simple search conditions in order to create
complex assertions

Comparison operators

The symbols =, <>, != , ~=, ̂ =, <, <=, >, >=, !< , ~<, ̂ <, !> , ~> and ^>

Comparison predicates

LIKE, STARTING WITH, CONTAINING, SIMILAR TO, BETWEEN, IS [NOT] NULL and IS [NOT] DISTINCT FROM

Existential predicates

Predicates used to check the existence of values in a set. The IN predicate can be used both with
sets of comma-separated constants and with subqueries that return a single column. The EXISTS,
SINGULAR, ALL, ANY and SOME predicates can be used only with subqueries.

Constant

A number or a string literal enclosed in apostrophes

Chapter 4. Common Language Elements

53

Date/time literal

An expression, similar to a string literal enclosed in apostrophes, that can be interpreted as a
date, time or timestamp value. Date literals can be predefined literals ('TODAY', 'NOW', etc.) or
strings of characters and numerals, such as '25.12.2016 15:30:35' , that can be resolved as date
and/or time strings.

Context variable

An internally-defined context variable

Local variable

Declared local variable, input or output parameter of a PSQL module (stored procedure, trigger,
unnamed PSQL block in DSQL)

Positional parameter

A member of in an ordered group of one or more unnamed parameters passed to a stored
procedure or prepared query

Subquery

A SELECT statement enclosed in parentheses that returns a single (scalar) value or, when used in
existential predicates, a set of values

Function identifier

The identifier of an internal or external function in a function expression

Type cast

An expression explicitly converting data of one data type to another using the CAST function (
CAST (<value> AS <datatype>)). For date/time literals only, the shorthand syntax <datatype>
<value> is also supported (DATE '2016-12-25').

Conditional expression

Expressions using CASE and related internal functions

Parentheses

Bracket pairs (É) used to group expressions. Operations inside the parentheses are performed
before operations outside them. When nested parentheses are used, the most deeply nested
expressions are evaluated first and then the evaluations move outward through the levels of
nesting.

COLLATE clause

Clause applied to CHAR and VARCHAR types to specify the character-set-specific collation
sequence to use in string comparisons

NEXT VALUE FOR sequence

Expression for obtaining the next value of a specified generator (sequence). The internal
GEN_ID() function does the same.

Chapter 4. Common Language Elements

54

4.1.1. Constants

A constant is a value that is supplied directly in an SQL statement, not derived from an expression,
a parameter, a column reference nor a variable. It can be a string or a number.

String Constants (Literals)

A string constant!Ñ!or string literal!Ñ!is a series of characters enclosed between a pair of
apostrophes (Òsingle quotesÓ). The maximum length of a string is 32,767 bytes; the maximum
character count will be determined by the number of bytes used to encode each character.

!

¥ Double quotes are NOT VALID for quoting strings. SQL reserves a different
purpose for them.

¥ If a literal apostrophe is required within a string constant, it is ÒescapedÓ by
prefixing it with another apostrophe. For example, 'Mother O''Reilly Õs home-
made hooch'.

¥ Care should be taken with the string length if the value is to be written to a
VARCHAR column. The maximum length for a VARCHAR is 32,765 bytes.

The character set of a string constant is assumed to be the same as the character set of its destined
storage.

String Constants in Hexadecimal Notation

From Firebird 2.5 forward, string literals can be entered in hexadecimal notation, so-called Òbinary
stringsÓ. Each pair of hex digits defines one byte in the string. Strings entered this way will have
character set OCTETS by default, but the introducer syntax can be used to force a string to be
interpreted as another character set.

Syntax

{x|X}'<hexstring>'

<hexstring> ::= an even number of <hexdigit>
<hexdigit> ::= one of 0..9, A..F, a..f

Chapter 4. Common Language Elements

55

Examples

select x'4E657276656E' from rdb$database
-- returns 4E657276656E, a 6-byte 'binary' string

select _ascii x'4E657276656E' from rdb$database
-- returns 'Nerven' (same string, now interpreted as ASCII text)

select _iso8859_1 x'53E46765' from rdb$database
-- returns 'Säge' (4 chars, 4 bytes)

select _utf8 x'53C3A46765' from rdb$database
-- returns 'Säge' (4 chars, 5 bytes)

!

Notes

The client interface determines how binary strings are displayed to the user. The
isql utility, for example, uses upper case letters A-F, while FlameRobin uses lower
case letters. Other client programs may use other conventions, such as displaying
spaces between the byte pairs: '4E 65 72 76 65 6E' .

The hexadecimal notation allows any byte value (including 00) to be inserted at
any position in the string. However, if you want to coerce it to anything other than
OCTETS, it is your responsibility to supply the bytes in a sequence that is valid for
the target character set.

Introducer Syntax for String Literals

If necessary, a string literal may be preceded by a character set name, itself prefixed with an
underscore Ò_Ó. This is known as introducer syntax . Its purpose is to inform the engine about how to
interpret and store the incoming string.

Example

INSERT INTO People
VALUES (_ISO8859_1 'Hans-Jörg Schäfer')

Number Constants (Literals)

A number constant!Ñ!or number literal!Ñ!is any valid number in a supported notation:

¥ In SQL, for numbers in the standard decimal notation, the decimal point is always represented
by period (. , full-stop, dot) character and thousands are not separated. Inclusion of commas,
blanks, etc. will cause errors.

¥ Exponential notation is supported. For example, 0.0000234 can be expressed as 2.34e-5 .

¥ Hexadecimal notation is supported by Firebird 2.5 and higher versions!Ñ!see below.

Chapter 4. Common Language Elements

56

Hexadecimal Notation for Numbers

From Firebird 2.5 forward, integer values can be entered in hexadecimal notation. Numbers with 1-
8 hex digits will be interpreted as type INTEGER; numbers with 9-16 hex digits as type BIGINT.

Syntax

0{x|X}<hexdigits>

<hexdigits> ::= 1-16 of <hexdigit>
<hexdigit> ::= one of 0..9, A..F, a..f

Examples

select 0x6FAA0D3 from rdb$database -- returns 117088467
select 0x4F9 from rdb$database -- returns 1273
select 0x6E44F9A8 from rdb$database -- returns 1850014120
select 0x9E44F9A8 from rdb$database -- returns -1639646808 (an INTEGER)
select 0x09E44F9A8 from rdb$database -- returns 2655320488 (a BIGINT)
select 0x28ED678A4C987 from rdb$database -- returns 720001751632263
select 0xFFFFFFFFFFFFFFFF from rdb$database -- returns -1

Hexadecimal Value Ranges

¥ Hex numbers in the range 0 .. 7FFF FFFF are positive INTEGERs with values between 0 ..
2147483647 decimal. To coerce a number to BIGINT, prepend enough zeroes to bring the total
number of hex digits to nine or above. That changes the type but not the value.

¥ Hex numbers between 8000 0000 .. FFFF FFFF require some attention:

" When written with eight hex digits, as in 0x9E44F9A8, a value is interpreted as 32-bit INTEGER.
Since the leftmost bit (sign bit) is set, it maps to the negative range -2147483648 .. -1 decimal.

" With one or more zeroes prepended, as in 0x09E44F9A8, a value is interpreted as 64-bit BIGINT
in the range 0000 0000 8000 0000 .. 0000 0000 FFFF FFFF. The sign bit is not set now, so they
map to the positive range 2147483648 .. 4294967295 decimal.

Thus, in this range!Ñ!and only in this range!Ñ!prepending a mathematically insignificant 0
results in a totally different value. This is something to be aware of.

¥ Hex numbers between 1 0000 0000 .. 7FFF FFFF FFFF FFFF are all positive BIGINT.

¥ Hex numbers between 8000 0000 0000 0000 .. FFFF FFFF FFFF FFFF are all negative BIGINT.

¥ A SMALLINT cannot be written in hex, strictly speaking, since even 0x1 is evaluated as INTEGER.
However, if you write a positive integer within the 16-bit range 0x0000 (decimal zero) to 0x7FFF
(decimal 32767) it will be converted to SMALLINT transparently.

It is possible to write to a negative SMALLINT in hex, using a 4-byte hex number within the range
0xFFFF8000 (decimal -32768) to 0xFFFFFFFF (decimal -1).

Chapter 4. Common Language Elements

57

4.1.2. SQL Operators

SQL operators comprise operators for comparing, calculating, evaluating and concatenating values.

Operator Precedence

SQL Operators are divided into four types. Each operator type has a precedence, a ranking that
determines the order in which operators and the values obtained with their help are evaluated in
an expression. The higher the precedence of the operator type is, the earlier it will be evaluated.
Each operator has its own precedence within its type, that determines the order in which they are
evaluated in an expression.

Operators with the same precedence are evaluated from left to right. To force a different evaluation
order, operations can be grouped by means of parentheses.

Table 12. Operator Type Precedence

Operator Type Precedence Explanation

Concatenation 1 Strings are concatenated before any other operations take
place

Arithmetic 2 Arithmetic operations are performed after strings are
concatenated, but before comparison and logical
operations

Comparison 3 Comparison operations take place after string
concatenation and arithmetic operations, but before
logical operations

Logical 4 Logical operators are executed after all other types of
operators

Concatenation Operator

The concatenation operator, two pipe characters known as Òdouble pipeÓ!Ñ!Ô || Õ!Ñ!concatenates
(connects together) two character strings to form a single string. Character strings can be constants
or values obtained from columns or other expressions.

Example

SELECT LAST_NAME || ', ' || FIRST_NAME AS FULL_NAME
FROM EMPLOYEE

Arithmetic Operators

Table 13. Arithmetic Operator Precedence

Operator Purpose Precedence

+signed_number Unary plus 1

-signed_number Unary minus 1

Chapter 4. Common Language Elements

58

Operator Purpose Precedence

* Multiplication 2

/ Division 2

+ Addition 3

- Subtraction 3

Example

UPDATE T
Ê SET A = 4 + 1/(B-C)*D

! Where operators have the same precedence, they are evaluated in left-to-right
sequence.

Comparison Operators

Table 14. Comparison Operator Precedence

Operator Purpose Precedence

= Is equal to, is identical to 1

<>, != , ~=, ̂ = Is not equal to 1

> Is greater than 1

< Is less than 1

>= Is greater than or equal to 1

<= Is less than or equal to 1

!> , ~>, ̂ > Is not greater than 1

!< , ~<, ̂ < Is not less than 1

This group also includes comparison predicates BETWEEN, LIKE, CONTAINING, SIMILAR TO, IS and others.

Example

IF (SALARY > 1400) THEN
É

See also

Other Comparison Predicates .

Logical Operators

Table 15. Logical Operator Precedence

Operator Purpose Precedence

NOT Negation of a search condition 1

Chapter 4. Common Language Elements

59

Operator Purpose Precedence

AND Combines two or more predicates, each of which
must be true for the entire predicate to be true

2

OR Combines two or more predicates, of which at
least one predicate must be true for the entire
predicate to be true

3

Example

IF (A < B OR (A > C AND A > D) AND NOT (C = D)) THEN É

NEXT VALUE FOR

Available

DSQL, PSQL

NEXT VALUE FOR returns the next value of a sequence. SEQUENCE is an SQL-compliant term for a
generator in Firebird and its ancestor, InterBase. The NEXT VALUE FOR operator is equivalent to the
legacy GEN_ID (É, 1) function and is the recommended syntax for retrieving the next sequence
value.

Syntax for NEXT VALUE FOR

NEXT VALUE FOR sequence-name

Example

NEW.CUST_ID = NEXT VALUE FOR CUSTSEQ;

!
Unlike GEN_ID (É, 1) , the NEXT VALUE FOR variant does not take any parameters
and thus, provides no way to retrieve the current value of a sequence, nor to step
the next value by more than 1. GEN_ID (É, <step value>) is still needed for these
tasks. A step value of 0 returns the current sequence value.

See also

SEQUENCE (GENERATOR), GEN_ID()

4.1.3. Conditional Expressions

A conditional expression is one that returns different values according to how a certain condition is
met. It is composed by applying a conditional function construct, of which Firebird supports
several. This section describes only one conditional expression construct: CASE. All other conditional
expressions apply internal functions derived from CASE and are described in Conditional Functions .

Chapter 4. Common Language Elements

60

CASE

Available

DSQL, PSQL

The CASE construct returns a single value from a number of possible ones. Two syntactic variants
are supported:

¥ The simple ÊCASE, comparable to a case construct in Pascal or a switch in C

¥ The searchedÊCASE, which works like a series of Ò if É else if É else if ÓÊclauses.

Simple CASE

Syntax

É
CASE <test-expr>
Ê WHEN <expr> THEN <result>
Ê [WHEN <expr> THEN <result> ...]
Ê [ELSE <defaultresult>]
END
É

When this variant is used, test-expr is compared expr 1, expr 2 etc., until a match is found and the
corresponding result is returned. If no match is found, defaultresult from the optional ELSE clause is
returned. If there are no matches and no ELSE clause, NULL is returned.

The matching works identically to the Ò =Ó operator. That is, if test-expr is NULL, it does not match any
expr , not even an expression that resolves to NULL.

The returned result does not have to be a literal value: it might be a field or variable name,
compound expression or NULL literal.

Example

SELECT
Ê NAME,
Ê AGE,
Ê CASE UPPER(SEX)
Ê WHEN 'M' THEN 'Male'
Ê WHEN 'F' THEN 'Female'
Ê ELSE 'Unknown'
Ê END GENDER,
RELIGION
Ê FROM PEOPLE

A short form of the simple CASE construct is the DECODE function.

Chapter 4. Common Language Elements

61

Searched CASE

Syntax

CASE
Ê WHEN <bool_expr> THEN <result>
Ê [WHEN <bool_expr> THEN <result> É]
Ê [ELSE <defaultresult>]
END

The bool_expr expression is one that gives a ternary logical result: TRUE, FALSE or NULL. The first
expression to return TRUE determines the result. If no expressions return TRUE, defaultresult from
the optional ELSE clause is returned as the result. If no expressions return TRUE and there is no ELSE
clause, the result will be NULL.

As with the simple CASE construct, the result need not be a literal value: it might be a field or
variable name, a compound expression, or be NULL.

Example

CANVOTE = CASE
Ê WHEN AGE >= 18 THEN 'Yes'
Ê WHEN AGE < 18 THEN 'No'
Ê ELSE 'Unsure'
END

4.1.4. NULL in Expressions

NULL is not a value in SQL, but a state indicating that the value of the element either is unknown or it
does not exist. It is not a zero, nor a void, nor an Òempty stringÓ, and it does not act like any value.

When you use NULL in numeric, string or date/time expressions, the result will always be NULL. When
you use NULL in logical (Boolean) expressions, the result will depend on the type of the operation
and on other participating values. When you compare a value to NULL, the result will be unknown .

"
Important to Note

NULL means NULL but, in Firebird, the logical result unknown is also represented by
NULL.

Expressions Returning NULL

Expressions in this list will always return NULL:

Chapter 4. Common Language Elements

62

1 + 2 + 3 + NULL
'Home ' || 'sweet ' || NULL
MyField = NULL
MyField <> NULL
NULL = NULL
not (NULL)

If it seems difficult to understand why, remember that NULL is a state that stands for ÒunknownÓ.

NULL in Logical Expressions

It has already been shown that NOT (NULL) results in NULL. The interaction is a bit more complicated
for the logical AND and logical OR operators:

NULL or false = NULL
NULL or true = true
NULL or NULL = NULL
NULL and false = false
NULL and true = NULL
NULL and NULL = NULL

Up to and including Firebird 2.5.x, there is no implementation for a logical (Boolean) data
type!Ñ!that is coming in Firebird 3. However, there are logical expressions (predicates) that can
return true, false or unknown.

Examples

(1 = NULL) or (1 <> 1) -- returns NULL
(1 = NULL) or (1 = 1) -- returns TRUE
(1 = NULL) or (1 = NULL) -- returns NULL
(1 = NULL) and (1 <> 1) -- returns FALSE
(1 = NULL) and (1 = 1) -- returns NULL
(1 = NULL) and (1 = NULL) -- returns NULL

4.1.5. Subqueries

A subquery is a special form of expression that is actually a query embedded within another query.
Subqueries are written in the same way as regular SELECT queries, but they must be enclosed in
parentheses. Subquery expressions can be used in the following ways:

¥ To specify an output column in the SELECT list

¥ To obtain values or conditions for search predicates (the WHERE, HAVING clauses).

¥ To produce a set that the enclosing query can select from, as though were a regular table or
view. Subqueries like this appear in the FROM clause (derived tables) or in a Common Table
Expression (CTE)

Chapter 4. Common Language Elements

63

Correlated Subqueries

A subquery can be correlated . A query is correlated when the subquery and the main query are
interdependent. To process each record in the subquery, it is necessary to fetch a record in the main
query; i.e., the subquery fully depends on the main query.

Sample Correlated Subquery

SELECT *
FROM Customers C
WHERE EXISTS
Ê (SELECT *
Ê FROM Orders O
Ê WHERE C.cnum = O.cnum
Ê AND O.adate = DATE '10.03.1990');

When subqueries are used to get the values of the output column in the SELECT list, a subquery
must return a scalar result.

Scalar Results

Subqueries used in search predicates, other than existential and quantified predicates, must return
a scalar result; that is, not more than one column from not more than one matching row or
aggregation. If the result would return more, a run-time error will occur (ÒMultiple rows in a
singleton selectÉÓ).

!
Although it is reporting a genuine error, the message can be slightly misleading. A
Òsingleton SELECTÓ is a query that must not be capable of returning more than one
row. However, ÒsingletonÓ and ÒscalarÓ are not synonymous: not all singleton
SELECTS are required to be scalar; and single-column selects can return multiple
rows for existential and quantified predicates.

Subquery Examples

1. A subquery as the output column in a SELECT list:

SELECT
Ê e.first_name,
Ê e.last_name,
Ê (SELECT
Ê sh.new_salary
Ê FROM
Ê salary_history sh
Ê WHERE
Ê sh.emp_no = e.emp_no
Ê ORDER BY sh.change_date DESC ROWS 1) AS last_salary
FROM
Ê employee e

Chapter 4. Common Language Elements

64

2. A subquery in the WHERE clause for obtaining the employeeÕs maximum salary and filtering by it:

SELECT
Ê e.first_name,
Ê e.last_name,
Ê e.salary
FROM
Ê employee e
WHERE
Ê e.salary = (
Ê SELECT MAX(ie.salary)
Ê FROM employee ie
Ê)

4.2. Predicates
A predicate is a simple expression asserting some fact, letÕs call it P. If P resolves as TRUE, it
succeeds. If it resolves to FALSE or NULL (UNKNOWN), it fails. A trap lies here, though: suppose the
predicate, P, returns FALSE. In this case NOT(P) will return TRUE. On the other hand, if P returns
NULL (unknown), then NOT(P) returns NULL as well.

In SQL, predicates can appear in CHECK constraints, WHERE and HAVING clauses, CASE expressions, the
IIF() function and in the ON condition of JOIN clauses.

4.2.1. Assertions

An assertion is a statement about the data that, like a predicate, can resolve to TRUE, FALSE or
NULL. Assertions consist of one or more predicates, possibly negated using NOT and connected by
AND and OR operators. Parentheses may be used for grouping predicates and controlling evaluation
order.

A predicate may embed other predicates. Evaluation sequence is in the outward direction, i.e., the
innermost predicates are evaluated first. Each ÒlevelÓ is evaluated in precedence order until the
truth of the ultimate assertion is resolved.

4.2.2. Comparison Predicates

A comparison predicate consists of two expressions connected with a comparison operator. There
are six traditional comparison operators:

=, >, <, >=, <=, <>

For the complete list of comparison operators with their variant forms, see Comparison Operators .

If one of the sides (left or right) of a comparison predicate has NULL in it, the value of the predicate
will be UNKNOWN.

Chapter 4. Common Language Elements

65

Examples

1. Retrieve information about computers with the CPU frequency not less than 500 MHz and the
price lower than $800:

SELECT *
FROM Pc
WHERE speed >= 500 AND price < 800;

2. Retrieve information about all dot matrix printers that cost less than $300:

SELECT *
FROM Printer
WHERE ptrtype = 'matrix' AND price < 300;

3. The following query will return no data, even if there are printers with no type specified for
them, because a predicate that compares NULL with NULL returns NULL:

SELECT *
FROM Printer
WHERE ptrtype = NULL AND price < 300;

On the other hand, ptrtype can be tested for NULL and return a result: it is just that it is not a
comparison test:

SELECT *
FROM Printer
WHERE ptrtype IS NULL AND price < 300;

!Ñ!see IS [NOT] NULL.

!
Note about String Comparison

When CHAR and VARCHAR fields are compared for equality, trailing spaces are
ignored in all cases.

Other Comparison Predicates

Other comparison predicates are marked by keyword symbols.

BETWEEN

Available

DSQL, PSQL, ESQL

Chapter 4. Common Language Elements

66

Syntax

<value> [NOT] BETWEEN <value_1> AND <value_2>

The BETWEEN predicate tests whether a value falls within a specified range of two values. (NOT
BETWEEN tests whether the value does not fall within that range.)

The operands for BETWEEN predicate are two arguments of compatible data types. Unlike in some
other DBMS, the BETWEEN predicate in Firebird is not symmetrical!Ñ!if the lower value is not the first
argument, the BETWEEN predicate will always return FALSE. The search is inclusive (the values
represented by both arguments are included in the search). In other words, the BETWEEN predicate
could be rewritten:

<value> >= <value_1> AND <value> <= <value_2>

When BETWEEN is used in the search conditions of DML queries, the Firebird optimizer can use an
index on the searched column, if it is available.

Example

SELECT *
FROM EMPLOYEE
WHERE HIRE_DATE BETWEEN date '01.01.1992' AND CURRENT_DATE

LIKE

Available

DSQL, PSQL, ESQL

Syntax

<match value> [NOT] LIKE <pattern>
Ê [ESCAPE <escape character>]

<match value> ::= character-type expression
<pattern> ::= search pattern
<escape character> ::= escape character

The LIKE predicate compares the character-type expression with the pattern defined in the second
expression. Case- or accent-sensitivity for the comparison is determined by the collation that is in
use. A collation can be specified for either operand, if required.

Wildcards

Two wildcard symbols are available for use in the search pattern:

¥ the percentage symbol (%) will match any sequence of zero or more characters in the tested
value

Chapter 4. Common Language Elements

67

¥ the underscore character (_) will match any single character in the tested value

If the tested value matches the pattern, taking into account wildcard symbols, the predicate is
TRUE.

Using the ESCAPE Character Option

If the search string contains either of the wildcard symbols, the ESCAPE clause can be used to specify
an escape character. The escape character must precede the Ô %Õ or Ô_Õ} symbol in the search string, to
indicate that the symbol is to be interpreted as a literal character.

Examples using LIKE

1. Find the numbers of departments whose names start with the word ÒSoftwareÓ:

SELECT DEPT_NO
FROM DEPT
WHERE DEPT_NAME LIKE 'Software%';

It is possible to use an index on the DEPT_NAME field if it exists.

!

About LIKE and the Optimizer

Actually, the LIKE predicate does not use an index. However, if the predicate
takes the form of LIKE 'string%' , it will be converted to the STARTING WITH
predicate, which will use an index.

So, if you need to search for the beginning of a string, it is recommended to use
the STARTING WITH predicate instead of the LIKE predicate.

2. Search for employees whose names consist of 5 letters, start with the letters ÒSmÓ and end with
ÒthÓ. The predicate will be true for such names as ÒSmithÓ and ÒSmythÓ.

SELECT
Ê first_name
FROM
Ê employee
WHERE first_name LIKE 'Sm_th'

3. Search for all clients whose address contains the string ÒRostovÓ:

SELECT *
FROM CUSTOMER
WHERE ADDRESS LIKE '%Rostov%'

Chapter 4. Common Language Elements

68

!
If you need to do a case-insensitive search for something enclosed inside a
string (LIKE '%Abc%'), use of the CONTAINING predicate is recommended, in
preference to the LIKE predicate.

4. Search for tables containing the underscore character in their names. The Ô #Õ character is used
as the escape character:

SELECT
Ê RDB$RELATION_NAME
FROM RDB$RELATIONS
WHERE RDB$RELATION_NAME LIKE '%#_%' ESCAPE '#'

See also

STARTING WITH, CONTAINING, SIMILAR TO

STARTING WITH

Available

DSQL, PSQL, ESQL

Syntax

<value> [NOT] STARTING WITH <value>

The STARTING WITH predicate searches for a string or a string-like type that starts with the characters
in its value argument. The search is case-sensitive.

When STARTING WITH is used in the search conditions of DML queries, the Firebird optimizer can use
an index on the searched column, if it exists.

Example

Search for employees whose last names start with ÒJoÓ:

SELECT LAST_NAME, FIRST_NAME
FROM EMPLOYEE
WHERE LAST_NAME STARTING WITH 'Jo'

See also

LIKE

CONTAINING

Available

DSQL, PSQL, ESQL

Chapter 4. Common Language Elements

69

Syntax

<value> [NOT] CONTAINING <value>

The CONTAINING predicate searches for a string or a string-like type looking for the sequence of
characters that matches its argument. It can be used for an alphanumeric (string-like) search on
numbers and dates. A CONTAINING search is not case-sensitive. However, if an accent-sensitive
collation is in use then the search will be accent-sensitive.

When CONTAINING is used in the search conditions of DML queries, the Firebird optimizer can use an
index on the searched column, if a suitable one exists.

Examples

1. Search for projects whose names contain the substring ÒMapÓ:

SELECT *
FROM PROJECT
WHERE PROJ_NAME CONTAINING 'Map';

Two rows with the names ÒAutoMapÓ and ÒMapBrowser portÓ are returned.

2. Search for changes in salaries with the date containing number 84 (in this case, it means
changes that took place in 1984):

SELECT *
FROM SALARY_HISTORY
WHERE CHANGE_DATE CONTAINING 84;

See also

LIKE

SIMILAR TO

Available

DSQL, PSQL

Syntax

string-expression [NOT] SIMILAR TO <pattern> [ESCAPE <escape-char>]

<pattern> ::= an SQL regular expression
<escape-char> ::= a single character

SIMILAR TO matches a string against an SQL regular expression pattern. Unlike in some other
languages, the pattern must match the entire string in order to succeed!Ñ!matching a substring is
not enough. If any operand is NULL, the result is NULL. Otherwise, the result is TRUE or FALSE.

Chapter 4. Common Language Elements

70

Syntax: SQL Regular Expressions

The following syntax defines the SQL regular expression format. It is a complete and correct top-
down definition. It is also highly formal, rather long and probably perfectly fit to discourage
everybody who hasnÕt already some experience with regular expressions (or with highly formal,
rather long top-down definitions). Feel free to skip it and read the next section, Building Regular
Expressions , which uses a bottom-up approach, aimed at the rest of us.

<regular expression> ::= <regular term> ['|' <regular term> ...]

<regular term> ::= <regular factor> ...

<regular factor> ::= <regular primary> [<quantifier>]

<quantifier> ::= ? | * | + | '{' <m> [,[<n>]] '}'

<m>, <n> ::= unsigned int, with <m> <= <n> if both present

<regular primary> ::=
Ê <character> | <character class> | %
Ê | (<regular expression>)

<character> ::= <escaped character> | <non-escaped character>

<escaped character> ::=
Ê <escape-char> <special character> | <escape-char> <escape-char>

<special character> ::= any of the characters []()|^-+*%_?{}

<non-escaped character> ::=
Ê any character that is not a <special character>
Ê and not equal to <escape-char> (if defined)

<character class> ::=
Ê '_' | '[' <member> ... ']' | '[^' <non-member> ... ']'
Ê | '[' <member> ... '^' <non-member> ... ']'

<member>, <non-member> ::= <character> | <range> | <predefined class>

<range> ::= <character>-<character>

<predefined class> ::= '[:' <predefined class name> ':]'

<predefined class name> ::=
Ê ALPHA | UPPER | LOWER | DIGIT | ALNUM | SPACE | WHITESPACE

Building Regular Expressions

In this section are the elements and rules for building SQL regular expressions.

Chapter 4. Common Language Elements

71

Characters

Within regular expressions, most characters represent themselves. The only exceptions are the
special characters below:

[] () | ^ - + * % _ ? { }

... and the escape character , if it is defined.

A regular expression that contains no special or escape characters matches only strings that are
identical to itself (subject to the collation in use). That is, it functions just like the Ô =Õ operator:

'Apple' similar to 'Apple' -- true
'Apples' similar to 'Apple' -- false
'Apple' similar to 'Apples' -- false
'APPLE' similar to 'Apple' -- depends on collation

Wildcards

The known SQL wildcards Ô _Õ and Ô%Õ match any single character and a string of any length,
respectively:

'Birne' similar to 'B_rne' -- true
'Birne' similar to 'B_ne' -- false
'Birne' similar to 'B%ne' -- true
'Birne' similar to 'Bir%ne%' -- true
'Birne' similar to 'Birr%ne' -- false

Notice how Ô%Õ also matches the empty string.

Character Classes

A bunch of characters enclosed in brackets define a character class. A character in the string
matches a class in the pattern if the character is a member of the class:

'Citroen' similar to 'Cit[arju]oen' -- true
'Citroen' similar to 'Ci[tr]oen' -- false
'Citroen' similar to 'Ci[tr][tr]oen' -- true

As can be seen from the second line, the class only matches a single character, not a sequence.

Within a class definition, two characters connected by a hyphen define a range. A range comprises
the two endpoints and all the characters that lie between them in the active collation. Ranges can
be placed anywhere in the class definition without special delimiters to keep them apart from the
other elements.

Chapter 4. Common Language Elements

72

'Datte' similar to 'Dat[q-u]e' -- true
'Datte' similar to 'Dat[abq-uy]e' -- true
'Datte' similar to 'Dat[bcg-km-pwz]e' -- false

Predefined Character Classes

The following predefined character classes can also be used in a class definition:

[:ALPHA:]

Latin letters a..z and A..Z. With an accent-insensitive collation, this class also matches accented
forms of these characters.

[:DIGIT:]

Decimal digits 0..9.

[:ALNUM:]

Union of [:ALPHA:] and [:DIGIT:] .

[:UPPER:]

Uppercase Latin letters A..Z. Also matches lowercase with case-insensitive collation and accented
forms with accent-insensitive collation.

[:LOWER:]

Lowercase Latin letters a..z. Also matches uppercase with case-insensitive collation and accented
forms with accent-insensitive collation.

[:SPACE:]

Matches the space character (ASCII 32).

[:WHITESPACE:]

Matches horizontal tab (ASCII 9), linefeed (ASCII 10), vertical tab (ASCII 11), formfeed (ASCII 12),
carriage return (ASCII 13) and space (ASCII 32).

Including a predefined class has the same effect as including all its members. Predefined classes are
only allowed within class definitions. If you need to match against a predefined class and nothing
more, place an extra pair of brackets around it.

'Erdbeere' similar to 'Erd[[:ALNUM:]]eere' -- true
'Erdbeere' similar to 'Erd[[:DIGIT:]]eere' -- false
'Erdbeere' similar to 'Erd[a[:SPACE:]b]eere' -- true
'Erdbeere' similar to [[:ALPHA:]] -- false
'E' similar to [[:ALPHA:]] -- true

If a class definition starts with a caret, everything that follows is excluded from the class. All other
characters match:

Chapter 4. Common Language Elements

73

'Framboise' similar to 'Fra[^ck-p]boise' -- false
'Framboise' similar to 'Fr[^a][^a]boise' -- false
'Framboise' similar to 'Fra[^[:DIGIT:]]boise' -- true

If the caret is not placed at the start of the sequence, the class contains everything before the caret,
except for the elements that also occur after the caret:

'Grapefruit' similar to 'Grap[a-m^f-i]fruit' -- true
'Grapefruit' similar to 'Grap[abc^xyz]fruit' -- false
'Grapefruit' similar to 'Grap[abc^de]fruit' -- false
'Grapefruit' similar to 'Grap[abe^de]fruit' -- false

'3' similar to '[[:DIGIT:]^4-8]' -- true
'6' similar to '[[:DIGIT:]^4-8]' -- false

Lastly, the already mentioned wildcard Ô _Õ is a character class of its own, matching any single
character.

Quantifiers

A question mark (Ô ?Õ) immediately following a character or class indicates that the preceding item
may occur 0 or 1 times in order to match:

'Hallon' similar to 'Hal?on' -- false
'Hallon' similar to 'Hal?lon' -- true
'Hallon' similar to 'Halll?on' -- true
'Hallon' similar to 'Hallll?on' -- false
'Hallon' similar to 'Halx?lon' -- true
'Hallon' similar to 'H[a-c]?llon[x-z]?' -- true

An asterisk (Ô*Õ) immediately following a character or class indicates that the preceding item may
occur 0 or more times in order to match:

'Icaque' similar to 'Ica*que' -- true
'Icaque' similar to 'Icar*que' -- true
'Icaque' similar to 'I[a-c]*que' -- true
'Icaque' similar to '_*' -- true
'Icaque' similar to '[[:ALPHA:]]*' -- true
'Icaque' similar to 'Ica[xyz]*e' -- false

A plus sign (Ô+Õ) immediately following a character or class indicates that the preceding item must
occur 1 or more times in order to match:

Chapter 4. Common Language Elements

74

'Jujube' similar to 'Ju_+' -- true
'Jujube' similar to 'Ju+jube' -- true
'Jujube' similar to 'Jujuber+' -- false
'Jujube' similar to 'J[jux]+be' -- true
'Jujube' sililar to 'J[[:DIGIT:]]+ujube' -- false

If a character or class is followed by a number enclosed in braces (Ô { Õ and Ô} Õ), it must be repeated
exactly that number of times in order to match:

'Kiwi' similar to 'Ki{2}wi' -- false
'Kiwi' similar to 'K[ipw]{2}i' -- true
'Kiwi' similar to 'K[ipw]{2}' -- false
'Kiwi' similar to 'K[ipw]{3}' -- true

If the number is followed by a comma (Ô , Õ), the item must be repeated at least that number of times
in order to match:

'Limone' similar to 'Li{2,}mone' -- false
'Limone' similar to 'Li{1,}mone' -- true
'Limone' similar to 'Li[nezom]{2,}' -- true

If the braces contain two numbers separated by a comma, the second number not smaller than the
first, then the item must be repeated at least the first number and at most the second number of
times in order to match:

'Mandarijn' similar to 'M[a-p]{2,5}rijn' -- true
'Mandarijn' similar to 'M[a-p]{2,3}rijn' -- false
'Mandarijn' similar to 'M[a-p]{2,3}arijn' -- true

The quantifiers Ô ?Õ, Ô*Õ and Ô+Õ are shorthand for {0,1} , {0,} and {1,} , respectively.

OR-ing Terms

Regular expression terms can be ORÕed with the Ô | Õ operator. A match is made when the argument
string matches at least one of the terms:

'Nektarin' similar to 'Nek|tarin' -- false
'Nektarin' similar to 'Nektarin|Persika' -- true
'Nektarin' similar to 'M_+|N_+|P_+' -- true

Subexpressions

One or more parts of the regular expression can be grouped into subexpressions (also called
subpatterns) by placing them between parentheses (Ô (Õ and Ô) Õ). A subexpression is a regular

Chapter 4. Common Language Elements

75

expression in its own right. It can contain all the elements allowed in a regular expression, and can
also have quantifiers added to it.

'Orange' similar to 'O(ra|ri|ro)nge' -- true
'Orange' similar to 'O(r[a-e])+nge' -- true
'Orange' similar to 'O(ra){2,4}nge' -- false
'Orange' similar to 'O(r(an|in)g|rong)?e' -- true

Escaping Special Characters

In order to match against a character that is special in regular expressions, that character has to be
escaped. There is no default escape character; rather, the user specifies one when needed:

'Peer (Poire)' similar to 'P[^]+ \(P[^]+\)' escape '\' -- true
'Pera [Pear]' similar to 'P[^]+ #[P[^]+#]' escape '#' -- true
'Päron-äppledryck' similar to 'P%$-ä%' escape '$' -- true
'Pärondryck' similar to 'P%--ä%' escape '-' -- false

The last line demonstrates that the escape character can also escape itself, if needed.

IS [NOT] DISTINCT FROM

Available

DSQL, PSQL

Syntax

<operand1> IS [NOT] DISTINCT FROM <operand2>

Two operands are considered DISTINCT if they have a different value or if one of them is NULL and
the other non-null. They are NOT DISTINCT if they have the same value or if both of them are NULL.

See also

IS [NOT] NULL

IS [NOT] NULL

Available

DSQL, PSQL, ESQL

Syntax

<value> IS [NOT] NULL

Since NULL is not a value, these operators are not comparison operators. The IS [NOT] NULL predicate
tests the assertion that the expression on the left side has a value (IS NOT NULL) or has no value (IS
NULL).

Chapter 4. Common Language Elements

76

Example

Search for sales entries that have no shipment date set for them:

SELECT * FROM SALES
WHERE SHIP_DATE IS NULL;

!
Note regarding the IS predicates

Up to and including Firebird 2.5, the IS predicates, like the other comparison
predicates, do not have precedence over the others. In Firebird 3.0 and higher,
these predicates take precedence above the others.

4.2.3. Existential Predicates

This group of predicates includes those that use subqueries to submit values for all kinds of
assertions in search conditions. Existential predicates are so called because they use various
methods to test for the existence or non-existence of some assertion, returning TRUE if the existence
or non-existence is confirmed or FALSE otherwise.

EXISTS

Available

DSQL, PSQL, ESQL

Syntax

[NOT] EXISTS (<select_stmt>)

The EXISTS predicate uses a subquery expression as its argument. It returns TRUE if the subquery
result would contain at least one row; otherwise it returns FALSE.

NOT EXISTS returns FALSE if the subquery result would contain at least one row; it returns TRUE
otherwise.

! The subquery can specify multiple columns, or SELECT *, because the evaluation is
made on the number of rows that match its criteria, not on the data.

Examples

1. Find those employees who have projects.

SELECT *
FROM employee
WHERE EXISTS(SELECT *
Ê FROM employee_project ep
Ê WHERE ep.emp_no = employee.emp_no)

2. Find those employees who have no projects.

Chapter 4. Common Language Elements

77

SELECT *
FROM employee
WHERE NOT EXISTS(SELECT *
Ê FROM employee_project ep
Ê WHERE ep.emp_no = employee.emp_no)

IN

Available

DSQL, PSQL, ESQL

Syntax

<value> [NOT] IN (<select_stmt> | <value_list>)

<value_list> ::= <value_1> [, <value_2> É]

The IN predicate tests whether the value of the expression on the left side is present in the set of
values specified on the right side. The set of values cannot have more than 1500 items. The IN
predicate can be replaced with the following equivalent forms:

(<value> = <value_1> [OR <value> = <value_2> É])

<value> = { ANY | SOME } (<select_stmt>)

When the IN predicate is used in the search conditions of DML queries, the Firebird optimizer can
use an index on the searched column, if a suitable one exists.

In its second form, the IN predicate tests whether the value of the expression on the left side is
present!Ñ!or not present, if NOT IN is used!Ñ!in the result of the executed subquery on the right side.

The subquery must be specified to result in only one column, otherwise the error Òcount of column
list and variable list do not matchÓ will occur.

Queries specified using the IN predicate with a subquery can be replaced with a similar query using
the EXISTS predicate. For instance, the following query:

SELECT
Ê model, speed, hd
FROM PC
WHERE
model IN (SELECT model
Ê FROM product
Ê WHERE maker = 'A');

can be replaced with a similar one using the EXISTS predicate:

Chapter 4. Common Language Elements

78

SELECT
Ê model, speed, hd
FROM PC
WHERE
ÊEXISTS (SELECT *
Ê FROM product
Ê WHERE maker = 'A'
Ê AND product.model = PC.model);

However, a query using NOT IN with a subquery does not always give the same result as its NOT
EXISTS counterpart. The reason is that EXISTS always returns TRUE or FALSE, whereas IN returns
NULL in one of these two cases:

a. when the test value is NULL and the IN () list is not empty

b. when the test value has no match in the IN () list and at least one list element is NULL

It is in only these two cases that IN () will return NULL while the corresponding EXISTS predicate will
return FALSE ('no matching row found'). In a search or, for example, an IF (É) statement, both
results mean ÒfailureÓ and it makes no difference to the outcome.

But, for the same data, NOT IN () will return NULL, while NOT EXISTS will return TRUE, leading to
opposite results.

As an example, suppose you have the following query:

-- Looking for people who were not born
-- on the same day as any famous New York citizen
SELECT P1.name AS NAME
FROM Personnel P1
WHERE P1.birthday NOT IN (SELECT C1.birthday
Ê FROM Celebrities C1
Ê WHERE C1.birthcity = 'New York');

Now, assume that the NY celebrities list is not empty and contains at least one NULL birthday. Then
for every citizen who does not share his birthday with a NY celebrity, NOT IN will return NULL,
because that is what IN does. The search condition is thereby not satisfied and the citizen will be left
out of the SELECT result, which is wrong.

For citizens whose birthday does match with a celebrityÕs birthday, NOT IN will correctly return
FALSE, so they will be left out too, and no rows will be returned.

If the NOT EXISTS form is used:

Chapter 4. Common Language Elements

79

-- Looking for people who were not born
-- on the same day as any famous New York citizen
SELECT P1.name AS NAME
FROM Personnel P1
WHERE NOT EXISTS (SELECT *
Ê FROM Celebrities C1
Ê WHERE C1.birthcity = 'New York'
Ê AND C1.birthday = P1.birthday);

non-matches will have a NOT EXISTS result of TRUE and their records will be in the result set.

#
Advice

If there is any chance of NULLs being encountered when searching for a non-match,
you will want to use NOT EXISTS.

Examples of use

1. Find employees with the names ÒPeteÓ, ÒAnnÓ and ÒRogerÓ:

SELECT *
FROM EMPLOYEE
WHERE FIRST_NAME IN ('Pete', 'Ann', 'Roger');

2. Find all computers that have models whose manufacturer starts with the letter ÒAÓ:

SELECT
Ê model, speed, hd
FROM PC
WHERE
Ê model IN (SELECT model
Ê FROM product
Ê WHERE maker STARTING WITH 'A');

See also

EXISTS

SINGULAR

Available

DSQL, PSQL, ESQL

Syntax

[NOT] SINGULAR (<select_stmt>)

The SINGULAR predicate takes a subquery as its argument and evaluates it as TRUE if the subquery

Chapter 4. Common Language Elements

80

returns exactly one result row; otherwise the predicate is evaluated as FALSE. The subquery may
list several output columns since the rows are not returned anyway. They are only tested for
(singular) existence. For brevity, people usually specify Ô SELECT *Õ. The SINGULAR predicate can return
only two values: TRUE or FALSE.

Example

Find those employees who have only one project.

SELECT *
FROM employee
WHERE SINGULAR(SELECT *
Ê FROM employee_project ep
Ê WHERE ep.emp_no = employee.emp_no)

4.2.4. Quantified Subquery Predicates

A quantifier is a logical operator that sets the number of objects for which this assertion is true. It is
not a numeric quantity, but a logical one that connects the assertion with the full set of possible
objects. Such predicates are based on logical universal and existential quantifiers that are
recognised in formal logic.

In subquery expressions, quantified predicates make it possible to compare separate values with
the results of subqueries; they have the following common form:

<value expression> <comparison operator> <quantifier> <subquery>

ALL

Available

DSQL, PSQL, ESQL

Syntax

<value> <op> ALL (<select_stmt>)

When the ALL quantifier is used, the predicate is TRUE if every value returned by the subquery
satisfies the condition in the predicate of the main query.

Example

Show only those clients whose ratings are higher than the rating of every client in Paris.

Chapter 4. Common Language Elements

81

SELECT c1.*
FROM Customers c1
WHERE c1.rating > ALL
Ê (SELECT c2.rating
Ê FROM Customers c2
Ê WHERE c2.city = 'Paris')

"

If the subquery returns an empty set, the predicate is TRUE for every left-side
value, regardless of the operator. This may appear to be contradictory, because
every left-side value will thus be considered both smaller and greater than, both
equal to and unequal to, every element of the right-side stream.

Nevertheless, it aligns perfectly with formal logic: if the set is empty, the predicate
is true 0 times, i.e., for every row in the set.

ANY and SOME

Available

DSQL, PSQL, ESQL

Syntax

<value> <op> {ANY | SOME} (<select_stmt>)

The quantifiers ANY and SOME are identical in their behaviour. Apparently, both are present in the
SQL standard so that they could be used interchangeably in order to improve the readability of
operators. When the ANY or the SOME quantifier is used, the predicate is TRUE if any of the values
returned by the subquery satisfies the condition in the predicate of the main query. If the subquery
would return no rows at all, the predicate is automatically considered as FALSE.

Example

Show only those clients whose ratings are higher than those of one or more clients in Rome.

SELECT *
FROM Customers
WHERE rating > ANY
Ê (SELECT rating
Ê FROM Customers
Ê WHERE city = 'Rome')

Chapter 4. Common Language Elements

82

Chapter 5. Data Definition (DDL) Statements
DDL is the data definition language subset of FirebirdÕs SQL language. DDL statements are used to
create, modify and delete database objects that have been created by users. When a DDL statement
is committed, the metadata for the object are created, changed or deleted.

5.1. DATABASE
This section describes how to create a database, connect to an existing database, alter the file
structure of a database and how to delete one. It also explains how to back up a database in two
quite different ways and how to switch the database to the Òcopy-safeÓ mode for performing an
external backup safely.

5.1.1. CREATE DATABASE

Used for

Creating a new database

Available in

DSQL, ESQL

Syntax

CREATE {DATABASE | SCHEMA} <filespec>
Ê [USER 'username' [PASSWORD 'password']]
Ê [PAGE_SIZE [=] size]
Ê [LENGTH [=] num [PAGE[S]]
Ê [SET NAMES 'charset ']
Ê [DEFAULT CHARACTER SET default_charset
Ê [COLLATION collation]] -- not supported in ESQL
Ê [<sec_file> [<sec_file> ...]]
Ê [DIFFERENCE FILE 'diff_file '] -- not supported in ESQL

<filespec> ::= "'" [server_spec]{ filepath | db_alias } "'"

<server_spec> ::= servername[/{ port | service }]: | \\ servername\

<sec_file> ::=
Ê FILE ' filepath '
Ê [LENGTH [=] num [PAGE[S]]
Ê [STARTING [AT [PAGE]] pagenum]

Table 16. CREATE DATABASE Statement Parameters

Parameter Description

filespec File specification for primary database file

Chapter 5. Data Definition (DDL) Statements

83

Parameter Description

server_spec Remote server specification in TCP/IP or Windows Networking style.
Optionally includes a port number or service name

filepath Full path and file name including its extension. The file name must be
specified according to the rules of the platform file system being used.

db_alias Database alias previously created in the aliases.conf file

servername Host name or IP address of the server where the database is to be created

username User name of the owner of the new database. It may consist of up to 31
characters. Case-insensitive

password Password of the user name as the database owner. The maximum length
is 31 characters; however only the first 8 characters are considered. Case-
sensitive

size Page size for the database, in bytes. Possible values are 4096 (the default),
8192 and 16384

num Maximum size of the primary database file, or a secondary file, in pages

charset Specifies the character set of the connection available to a client
connecting after the database is successfully created. Single quotes are
required

default_charset Specifies the default character set for string data types

collation Default collation for the default character set

sec_file File specificaton for a secondary file

pagenum Starting page number for a secondary database file

diff_file File path and name for DIFFERENCE files (.delta files)

The CREATE DATABASE statement creates a new database. You can use CREATE DATABASE or CREATE
SCHEMA. They are synonymous.

A database may consist of one or several files. The first (main) file is called the primary file ,
subsequent files are called secondary file[s] .

!
Multi-file Databases

Nowadays, multi-file databases are considered an anachronism. It made sense to
use multi-file databases on old file systems where the size of any file is limited. For
instance, you could not create a file larger than 4 GB on FAT32.

The primary file specification is the name of the database file and its extension with the full path to
it according to the rules of the OS platform file system being used. The database file must not exist
at the moment when the database is being created. If it does exist, you will get an error message
and the database will not be created.

If the full path to the database is not specified, the database will be created in one of the system
directories. The particular directory depends on the operating system. For this reason, unless you

Chapter 5. Data Definition (DDL) Statements

84

have a strong reason to prefer that situation, always specify the absolute path, when creating either
the database or an alias for it.

Using a Database Alias

You can use aliases instead of the full path to the primary database file. Aliases are defined in the
[path]` aliases.conf` file in the following format:

alias = filepath

Creating a Database Remotely

If you create a database on a remote server, you should specify the remote server specification. The
remote server specification depends on the protocol being used. If you use the TCP/IP protocol to
create a database, the primary file specification should look like this:

servername[/{_port_|_service_}]:{_filepath_ | _db_alias_}

If you use the Named Pipes protocol to create a database on a Windows server, the primary file
specification should look like this:

\\ servername\{ filepath | db_alias }

Optional Parameters for CREATE DATABASE

USER and PASSWORD

Clauses for specifying the user name and the password, respectively, of an existing user in the
security database security2.fdb . You do not have to specify the username and password if the
ISC_USER and ISC_PASSWORD environment variables are set. The user specified in the process of
creating the database will be its owner. This will be important when considering database and
object privileges.

PAGE_SIZE

Clause for specifying the database page size. This size will be set for the primary file and all
secondary files of the database. If you specify the database page size less than 4,096, it will be
changed automatically to the default page size, 4,096. Other values not equal to either 4,096,
8,192 or 16,384 will be changed to the closest smaller supported value. If the database page size
is not specified, it is set to the default value of 4,096.

LENGTH

Clause specifying the maximum size of the primary or secondary database file, in pages. When a
database is created, its primary and secondary files will occupy the minimum number of pages
necessary to store the system data, regardless of the value specified in the LENGTH clause. The
LENGTH value does not affect the size of the only (or last, in a multi-file database) file. The file will
keep increasing its size automatically when necessary.

Chapter 5. Data Definition (DDL) Statements

85

SET NAMES

Clause specifying the character set of the connection available after the database is successfully
created. The character set NONE is used by default. Notice that the character set should be
enclosed in a pair of apostrophes (single quotes).

DEFAULT CHARACTER SET

Clause specifying the default character set for creating data structures of string data types.
Character sets are applied to CHAR, VARCHAR and BLOB TEXT data types. The character set NONE is
used by default. It is also possible to specify the default COLLATION for the default character set,
making that collation sequence the default for the default character set. The default will be used
for the entire database except where an alternative character set, with or without a specified
collation, is used explicitly for a field, domain, variable, cast expression, etc.

STARTING AT

Clause that specifies the database page number at which the next secondary database file should
start. When the previous file is completely filled with data according to the specified page
number, the system will start adding new data to the next database file.

DIFFERENCE FILE

Clause specifying the path and name for the file delta that stores any mutations to the database
file after it has been switched to the Òcopy-safeÓ mode by the ALTER DATABASE BEGIN BACKUP
statement. For the detailed description of this clause, see ALTER DATABASE.

SET SQL DIALECT

Databases are created in Dialect 3 by default. For the database to be created in SQL dialect 1, you
will need to execute the statement SET SQL DIALECT 1 from script or the client application, e.g. in
isql , before the CREATE DATABASE statement.

Examples Using CREATE DATABASE

1. Creating a database in Windows, located on disk D with a page size of 8,192. The owner of the
database will be the user wizard . The database will be in Dialect 1 and it will use WIN1251 as its
default character set.

SET SQL DIALECT 1;
CREATE DATABASE 'D:\test.fdb'
USER 'wizard' PASSWORD 'player'
PAGE_SIZE = 8192 DEFAULT CHARACTER SET WIN1251;

2. Creating a database in the Linux operating system with a page size of 4,096. The owner of the
database will be the user wizard . The database will be in Dialect 3 and it will use UTF8 as its
default character set, with UNICODE_CI_AI as the default collation.

CREATE DATABASE '/home/firebird/test.fdb'
USER 'wizard' PASSWORD 'player'
DEFAULT CHARACTER SET UTF8 COLLATION UNICODE_CI_AI;

Chapter 5. Data Definition (DDL) Statements

86

3. Creating a database on the remote server ÒbaseserverÓ with the path specified in the alias ÒtestÓ
that has been defined previously in the file aliases.conf . The TCP/IP protocol is used. The owner
of the database will be the user wizard . The database will be in Dialect 3 and will use UTF8 as its
default character set.

CREATE DATABASE 'baseserver:test'
USER 'wizard' PASSWORD 'player'
DEFAULT CHARACTER SET UTF8;

4. Creating a database in Dialect 3 with UTF8 as its default character set. The primary file will
contain up to 10,000 pages with a page size of 8,192. As soon as the primary file has reached the
maximum number of pages, Firebird will start allocating pages to the secondary file test.fdb2 .
If that file is filled up to its maximum as well, test.fdb3 becomes the recipient of all new page
allocations. As the last file, it has no page limit imposed on it by Firebird. New allocations will
continue for as long as the file system allows it or until the storage device runs out of free space.
If a LENGTH parameter were supplied for this last file, it would be ignored.

SET SQL DIALECT 3;
CREATE DATABASE 'baseserver:D:\test.fdb'
USER 'wizard' PASSWORD 'player'
PAGE_SIZE = 8192
DEFAULT CHARACTER SET UTF8
FILE 'D:\test.fdb2'
STARTING AT PAGE 10001
FILE 'D:\test.fdb3'
STARTING AT PAGE 20001;

5. Creating a database in Dialect 3 with UTF8 as its default character set. The primary file will
contain up to 10,000 pages with a page size of 8,192. As far as file size and the use of secondary
files are concerned, this database will behave exactly like the one in the previous example.

SET SQL DIALECT 3;
CREATE DATABASE 'baseserver:D:\test.fdb'
USER 'wizard' PASSWORD 'player'
PAGE_SIZE = 8192
LENGTH 10000 PAGES
DEFAULT CHARACTER SET UTF8
FILE 'D:\test.fdb2'
FILE 'D:\test.fdb3'
STARTING AT PAGE 20001;

See also

ALTER DATABASE, DROP DATABASE

Chapter 5. Data Definition (DDL) Statements

87

5.1.2. ALTER DATABASE

Used for

Altering the file organisation of a database or toggling its Òcopy-safeÓ state

Available in

DSQL!Ñ!both functions. ESQL!Ñ!file reorganisation only

Syntax

ALTER {DATABASE | SCHEMA}
Ê [<add_sec_clause> [<add_sec_clause> ...]]
Ê [ADD DIFFERENCE FILE 'diff_file ' | DROP DIFFERENCE FILE]
Ê [{BEGIN | END} BACKUP]

<add_sec_clause> ::= ADD <sec_file> [<sec_file> ...]

<sec_file> ::=
Ê FILE ' filepath '
Ê [STARTING [AT [PAGE]] pagenum]
Ê [LENGTH [=] num [PAGE[S]]

!

Multiple files can be added in one ADD clause:

ALTER DATABASE
Ê ADD FILE x LENGTH 8000
Ê FILE y LENGTH 8000
Ê FILE z

Multiple ADD FILE clauses are allowed; and an ADD FILE clause that adds multiple
files (as in the example above) can be mixed with others that add only one file. The
statement was documented incorrectly in the old InterBase 6 Language Reference .

Table 17. ALTER DATABASE Statement Parameters

Parameter Description

add_sec_clause Adding a secondary database file

sec_file File specification for secondary file

filepath Full path and file name of the delta file or the secondary database file

pagenum Page number from which the secondary database file is to start

num Maximum size of the secondary file in pages

diff_file File path and name of the .delta file (difference file)

The ALTER DATABASE statement can:

¥ add secondary files to a database

Chapter 5. Data Definition (DDL) Statements

88

¥ switch a single-file database into and out of the Òcopy-safeÓ mode (DSQL only)

¥ set or unset the path and name of the delta file for physical backups (DSQL only)

Only administrators have the authority to use ALTER DATABASE.

Parameters for ALTER DATABASE

ADD FILE

Adds a secondary file to the database. It is necessary to specify the full path to the file and the
name of the secondary file. The description for the secondary file is similar to the one given for
the CREATE DATABASE statement.

ADD DIFFERENCE FILE

specifies the path and name of the delta file that stores any mutations to the database whenever
it is switched to the Òcopy-safeÓ mode. This clause does not actually add any file. It just overrides
the default name and path of the .delta file. To change the existing settings, you should delete the
previously specified description of the .delta file using the DROP DIFFERENCE FILE clause before
specifying the new description of the delta file. If the path and name of the .delta file are not
overridden, the file will have the same path and name as the database, but with the .delta file
extension.

#
If only a file name is specified, the .delta file will be created in the current
directory of the server. On Windows, this will be the system directory!Ñ!a very
unwise location to store volatile user files and contrary to Windows file system
rules.

DROP DIFFERENCE FILE

This is the clause that deletes the description (path and name) of the .delta file specified
previously in the ADD DIFFERENCE FILE clause. The file is not actually deleted. DROP DIFFERENCE
FILE deletes the path and name of the .delta file from the database header. Next time the
database is switched to the Òcopy-safeÓ mode, the default values will be used (i.e. the same path
and name as those of the database, but with the .delta extension).

BEGIN BACKUP

This is the clause that switches the database to the Òcopy-safeÓ mode. ALTER DATABASE with this
clause freezes the main database file, making it possible to back it up safely using file system
tools, even if users are connected and performing operations with data. Until the backup state of
the database is reverted to NORMAL , all changes made to the database will be written to the
.delta (difference) file.

"
Despite its syntax, a statement with the BEGIN BACKUP clause does not start a
backup process but just creates the conditions for doing a task that requires the
database file to be read-only temporarily.

END BACKUP

This is the clause used to switch the database from the Òcopy-safeÓ mode to the normal mode. A
statement with this clause merges the .delta file with the main database file and restores the

Chapter 5. Data Definition (DDL) Statements

89

normal operation of the database. Once the END BACKUP process starts, the conditions no longer
exist for creating safe backups by means of file system tools.

$

Use of BEGIN BACKUP and END BACKUP and copying the database files with filesystem
tools, is not safe with multi-file databases! Use this method only on single-file
databases.

Making a safe backup with the gbak utility remains possible at all times, although
it is not recommended to run gbak while the database is in LOCKED or MERGE
state.

Examples of ALTER DATABASE Usage

1. Adding a secondary file to the database. As soon as 30000 pages are filled in the previous
primary or secondary file, the Firebird engine will start adding data to the secondary file
test4.fdb .

ALTER DATABASE
Ê ADD FILE 'D:\test4.fdb'
Ê STARTING AT PAGE 30001;

2. Specifying the path and name of the delta file:

ALTER DATABASE
Ê ADD DIFFERENCE FILE 'D:\test.diff';

3. Deleting the description of the delta file:

ALTER DATABASE
Ê DROP DIFFERENCE FILE;

4. Switching the database to the Òcopy-safeÓ mode:

ALTER DATABASE
Ê BEGIN BACKUP;

5. Switching the database back from the Òcopy-safeÓ mode to the normal operation mode:

ALTER DATABASE
Ê END BACKUP;

See also

CREATE DATABASE, DROP DATABASE

Chapter 5. Data Definition (DDL) Statements

90

5.1.3. DROP DATABASE

Used for

Deleting the database to which you are currently connected

Available in

DSQL, ESQL

Syntax

DROP DATABASE

The DROP DATABASE statement deletes the current database. Before deleting a database, you have to
connect to it. The statement deletes the primary file, all secondary files and all shadow files .

Only administrators have the authority to use DROP DATABASE.

Example

Deleting the database the client is connected to.

DROP DATABASE;

See also

CREATE DATABASE, ALTER DATABASE

5.2. SHADOW
A shadow is an exact, page-by-page copy of a database. Once a shadow is created, all changes made
in the database are immediately reflected in the shadow. If the primary database file becomes
unavailable for some reason, the DBMS will switch to the shadow.

This section describes how to create and delete shadow files.

5.2.1. CREATE SHADOW

Used for

Creating a shadow for the current database

Available in

DSQL, ESQL

Chapter 5. Data Definition (DDL) Statements

91

Syntax

CREATE SHADOW <sh_num> [AUTO | MANUAL] [CONDITIONAL]
Ê ' filepath ' [LENGTH [=] num [PAGE[S]]]
Ê [<secondary_file> ...]

<secondary_file> ::=
Ê FILE ' filepath '
Ê [STARTING [AT [PAGE]] pagenum]
Ê [LENGTH [=] num [PAGE[S]]]

Table 18. CREATE SHADOW Statement Parameters

Parameter Description

sh_num Shadow number!Ñ!a positive number identifying the shadow set

filepath The name of the shadow file and the path to it, in accord with the rules of
the operating system

num Maximum shadow size, in pages

secondary_file Secondary file specification

page_num The number of the page at which the secondary shadow file should start

The CREATE SHADOW statement creates a new shadow. The shadow starts duplicating the database
right at the moment it is created. It is not possible for a user to connect to a shadow.

Like a database, a shadow may be multi-file. The number and size of a shadowÕs files are not
related to the number and size of the files of database it is shadowing.

The page size for shadow files is set to be equal to the database page size and cannot be changed.

If a calamity occurs involving the original database, the system converts the shadow to a copy of
the database and switches to it. The shadow is then unavailable . What happens next depends on the
MODE option.

AUTO | MANUAL Modes

When a shadow is converted to a database, it becomes unavailable. A shadow might alternatively
become unavailable because someone accidentally deletes its file, or the disk space where the
shadow files are stored is exhausted or is itself damaged.

¥ If the AUTO mode is selected (the default value), shadowing ceases automatically, all references
to it are deleted from the database header and the database continues functioning normally.

If the CONDITIONAL option was set, the system will attempt to create a new shadow to replace the
lost one. It does not always succeed, however, and a new one may need to be created manually.

¥ If the MANUAL mode attribute is set when the shadow becomes unavailable, all attempts to
connect to the database and to query it will produce error messages. The database will remain
inaccessible until either the shadow again becomes available or the database administrator

Chapter 5. Data Definition (DDL) Statements

92

deletes it using the DROP SHADOW statement. MANUAL should be selected if continuous shadowing
is more important than uninterrupted operation of the database.

Options for CREATE SHADOW

LENGTH

Clause specifying the maximum size of the primary or secondary shadow file in pages. The
LENGTH value does not affect the size of the only shadow file, nor the last if it is a set. The last (or
only) file will keep automatically increasing in size as long as it is necessary.

STARTING AT

Clause specifying the shadow page number at which the next shadow file should start. The
system will start adding new data to the next shadow file when the previous file is filled with
data up to the specified page number.

Only administrators have the authority to use CREATE SHADOW.

! You can verify the sizes, names and location of the shadow files by connecting to
the database using isql and running the command SHOW DATABASE;

Examples Using CREATE SHADOW

1. Creating a shadow for the current database as Òshadow number 1Ó:

CREATE SHADOW 1 'g:\data\test.shd';

2. Creating a multi-file shadow for the current database as Òshadow number 2Ó:

CREATE SHADOW 2 'g:\data\test.sh1'
Ê LENGTH 8000 PAGES
Ê FILE 'g:\data\test.sh2';

See also

CREATE DATABASE, DROP SHADOW

5.2.2. DROP SHADOW

Used for

Deleting a shadow from the current database

Available in

DSQL, ESQL

Syntax

DROP SHADOW sh_num

Chapter 5. Data Definition (DDL) Statements

93

Table 19. DROP SHADOW Statement Parameter

Parameter Description

sh_num Shadow number!Ñ!a positive number identifying the shadow set

The DROP SHADOW statement deletes the specified shadow for the database one is connected to. When
a shadow is dropped, all files related to it are deleted and shadowing to the specified sh_num
ceases.

Only administrators have the authority to use DROP SHADOW.

Example of Dropping a Shadow

Deleting Òshadow number 1Ó.

DROP SHADOW 1;

See also

CREATE SHADOW

5.3. DOMAIN
DOMAIN is one of the object types in a relational database. A domain is created as a specific data type
with some attributes attached to it. Once it has been defined in the database, it can be reused
repeatedly to define table columns, PSQL arguments and PSQL local variables. Those objects inherit
all of the attributes of the domain. Some attributes can be overridden when the new object is
defined, if required.

This section describes the syntax of statements used to create, modify and delete domains. A
detailed description of domains and their usage can be found in Custom Data Types!Ñ!Domains .

5.3.1. CREATE DOMAIN

Used for

Creating a new domain

Available in

DSQL, ESQL

Syntax

CREATE DOMAIN name [AS] <datatype>
Ê [DEFAULT {<literal> | NULL | <context_var>}]
Ê [NOT NULL] [CHECK (<dom_condition>)]
Ê [COLLATE collation_name]

<datatype> ::=
Ê {SMALLINT | INTEGER | BIGINT} [<array_dim>]
Ê | {FLOAT | DOUBLE PRECISION} [<array_dim>]

Chapter 5. Data Definition (DDL) Statements

94

Ê | {DATE | TIME | TIMESTAMP} [<array_dim>]
Ê | {DECIMAL | NUMERIC} [(precision [, scale])] [<array_dim>]
Ê | {{CHAR | CHARACTER} [VARYING] | VARCHAR} [(size)]
Ê [<array_dim>] [CHARACTER SET charset_name]
Ê | {NCHAR | NATIONAL {CHARACTER | CHAR}} [VARYING]
Ê [(size)] [<array_dim>]
Ê | BLOB [SUB_TYPE {subtype_num | subtype_name}]
Ê [SEGMENT SIZE seglen] [CHARACTER SET charset_name]
Ê | BLOB [(seglen [, subtype_num])]

<array_dim> ::= '[' [m:] n [,[m:] n ...] ']'

<dom_condition> ::=
Ê <val> <operator> <val>
Ê | <val> [NOT] BETWEEN <val> AND <val>
Ê | <val> [NOT] IN (<val> [, <val> ...] | <select_list>)
Ê | <val> IS [NOT] NULL
Ê | <val> IS [NOT] DISTINCT FROM <val>
Ê | <val> [NOT] CONTAINING <val>
Ê | <val> [NOT] STARTING [WITH] <val>
Ê | <val> [NOT] LIKE <val> [ESCAPE <val>]
Ê | <val> [NOT] SIMILAR TO <val> [ESCAPE <val>]
Ê | <val> <operator> {ALL | SOME | ANY} (<select_list>)
Ê | [NOT] EXISTS (<select_expr>)
Ê | [NOT] SINGULAR (<select_expr>)
Ê | (<dom_condition>)
Ê | NOT <dom_condition>
Ê | <dom_condition> OR <dom_condition>
Ê | <dom_condition> AND <dom_condition>

<operator> ::=
Ê <> | != | ^= | ~= | = | < | > | <= | >=
Ê | !< | ^< | ~< | !> | ^> | ~>

<val> ::=
Ê VALUE
Ê | <literal>
Ê | <context_var>
Ê | <expression>
Ê | NULL
Ê | NEXT VALUE FOR genname
Ê | GEN_ID(genname, <val>)
Ê | CAST(<val> AS <datatype>)
Ê | (<select_one>)
Ê | func([<val> [, <val> ...]])

Table 20. CREATE DOMAIN Statement Parameters

Parameter Description

name Domain name consisting of up to 31 characters

Chapter 5. Data Definition (DDL) Statements

95

Parameter Description

datatype SQL data type

literal A literal value that is compatible with datatype

context_var Any context variable whose type is compatible with datatype

dom_condition Domain condition

collation_name Name of a collation sequence that is valid for charset_name , if it is
supplied with datatype or, otherwise, is valid for the default character set
of the database

array_dim Array dimensions

m, n Integer numbers defining the index range of an array dimension

precision The total number of significant digits that a value of the datatype can hold
(1..18)

scale The number of digits after the decimal point (0.. precision)

size The maximum size of a string in characters

charset_name The name of a valid character set, if the character set of the domain is to
be different to the default character set of the database

subtype_num BLOB subtype number

subtype_name BLOB subtype mnemonic name

seglen Segment size (max. 65535)

select_one A scalar SELECT statement!Ñ!selecting one column and returning only one
row

select_list A SELECT statement selecting one column and returning zero or more
rows

select_expr A SELECT statement selecting one or more columns and returning zero or
more rows

expression An expression resolving to a value that is compatible with datatype

genname Sequence (generator) name

func Internal function or UDF

The CREATE DOMAIN statement creates a new domain.

Any SQL data type can be specified as the domain type.

Type-specific Details

ARRAY Types

¥ If the domain is to be an array, the base type can be any SQL data type except BLOB and ARRAY.

¥ The dimensions of the array are specified between square brackets. (In the Syntax block,
these brackets appear in quotes to distinguish them from the square brackets that identify
optional syntax elements.)

Chapter 5. Data Definition (DDL) Statements

96

¥ For each array dimension, one or two integer numbers define the lower and upper
boundaries of its index range:

" By default, arrays are 1-based. The lower boundary is implicit and only the upper
boundary need be specified. A single number smaller than 1 defines the range num ..1
and a number greater than 1 defines the range 1.. num .

" Two numbers separated by a colon (Ô : Õ) and optional whitespace, the second greater than
the first, can be used to define the range explicitly. One or both boundaries can be less
than zero, as long as the upper boundary is greater than the lower.

¥ When the array has multiple dimensions, the range definitions for each dimension must be
separated by commas and optional whitespace.

¥ Subscripts are validated only if an array actually exists. It means that no error messages
regarding invalid subscripts will be returned if selecting a specific element returns nothing
or if an array field is NULL.

CHARACTER Types

You can use the CHARACTER SET clause to specify the character set for the CHAR, VARCHAR and BLOB
(SUB_TYPE TEXT) types. If the character set is not specified, the character set specified as DEFAULT
CHARACTER SET in creating the database will be used. If no character set was specified then, the
character set NONE is applied by default when you create a character domain.

$
With character set NONE, character data are stored and retrieved the way they
were submitted. Data in any encoding can be added to a column based on such
a domain, but it is impossible to add this data to a column with a different
encoding. Because no transliteration is performed between the source and
destination encodings, errors may result.

DEFAULT Clause

The optional DEFAULT clause allows you to specify a default value for the domain. This value will
be added to the table column that inherits this domain when the INSERT statement is executed, if
no value is specified for it in the DML statement. Local variables and arguments in PSQL
modules that reference this domain will be initialized with the default value. For the default
value, use a literal of a compatible type or a context variable of a compatible type.

NOT NULL Constraint

Columns and variables based on a domain with the NOT NULL constraint will be prevented from
being written as NULL, i.e., a value is required .

#
When creating a domain, take care to avoid specifying limitations that would
contradict one another. For instance, NOT NULL and DEFAULT NULL are
contradictory.

CHECK Constraint[s]

The optional CHECK clause specifies constraints for the domain. A domain constraint specifies
conditions that must be satisfied by the values of table columns or variables that inherit from
the domain. A condition must be enclosed in parentheses. A condition is a logical expression
(also called a predicate) that can return the Boolean results TRUE, FALSE and UNKNOWN. A condition

Chapter 5. Data Definition (DDL) Statements

97

is considered satisfied if the predicate returns the value TRUE or Òunknown valueÓ (equivalent to
NULL). If the predicate returns FALSE, the condition for acceptance is not met.

VALUE Keyword

The keyword VALUE in a domain constraint substitutes for the table column that is based on this
domain or for a variable in a PSQL module. It contains the value assigned to the variable or the
table column. VALUE can be used anywhere in the CHECK constraint, though it is usually used in the
left part of the condition.

COLLATE

The optional COLLATE clause allows you to specify the collation sequence if the domain is based
on one of the string data types, including BLOBs with text subtypes. If no collation sequence is
specified, the collation sequence will be the one that is default for the specified character set at
the time the domain is created.

Any user connected to the database can create a domain.

CREATE DOMAIN Examples

1. Creating a domain that can take values greater than 1,000, with a default value of 10,000.

CREATE DOMAIN CUSTNO AS
Ê INTEGER DEFAULT 10000
Ê CHECK (VALUE > 1000);

2. Creating a domain that can take the values 'Yes' and 'No' in the default character set specified
during the creation of the database.

CREATE DOMAIN D_BOOLEAN AS
Ê CHAR(3) CHECK (VALUE IN ('Yes', 'No'));

3. Creating a domain with the UTF8 character set and the UNICODE_CI_AI collation sequence.

CREATE DOMAIN FIRSTNAME AS
Ê VARCHAR(30) CHARACTER SET UTF8
Ê COLLATE UNICODE_CI_AI;

4. Creating a domain of the DATE type that will not accept NULL and uses the current date as the
default value.

CREATE DOMAIN D_DATE AS
Ê DATE DEFAULT CURRENT_DATE
Ê NOT NULL;

5. Creating a domain defined as an array of 2 elements of the NUMERIC(18, 3) type. The starting

Chapter 5. Data Definition (DDL) Statements

98

array index is 1.

CREATE DOMAIN D_POINT AS
Ê NUMERIC(18, 3) [2];

! Domains defined over an array type may be used only to define table columns.
You cannot use array domains to define local variables in PSQL modules.

6. Creating a domain whose elements can be only country codes defined in the COUNTRY table.

CREATE DOMAIN D_COUNTRYCODE AS CHAR(3)
Ê CHECK (EXISTS(SELECT * FROM COUNTRY
Ê WHERE COUNTRYCODE = VALUE));

!
The example is given only to show the possibility of using predicates with
queries in the domain test condition. It is not recommended to create this style
of domain in practice unless the lookup table contains data that are never
deleted.

See also

ALTER DOMAIN, DROP DOMAIN

5.3.2. ALTER DOMAIN

Used for

Altering the current attributes of a domain or renaming it

Available in

DSQL, ESQL

Syntax

ALTER DOMAIN domain_name
Ê [TO new_name]
Ê [TYPE <datatype>]
Ê [SET DEFAULT {<literal> | NULL | <context_var>} | DROP DEFAULT]
Ê [ADD [CONSTRAINT] CHECK (<dom_condition>) | DROP CONSTRAINT]

<datatype> ::=
Ê {SMALLINT | INTEGER | BIGINT}
Ê | {FLOAT | DOUBLE PRECISION}
Ê | {DATE | TIME | TIMESTAMP}
Ê | {DECIMAL | NUMERIC} [(precision [, scale])]
Ê | {CHAR | CHARACTER} [VARYING] | VARCHAR} [(size)]
Ê [CHARACTER SET charset_name]
Ê | {NCHAR | NATIONAL {CHARACTER | CHAR}} [VARYING] [(size)]

Chapter 5. Data Definition (DDL) Statements

99

Ê | BLOB [SUB_TYPE {subtype_num | subtype_name}]
Ê [SEGMENT SIZE seglen] [CHARACTER SET charset_name]
Ê | BLOB [(seglen [, subtype_num])]

<dom_condition> ::=
Ê <val> <operator> <val>
Ê | <val> [NOT] BETWEEN <val> AND <val>
Ê | <val> [NOT] IN (<val> [, <val> ...] | <select_list>)
Ê | <val> IS [NOT] NULL
Ê | <val> IS [NOT] DISTINCT FROM <val>
Ê | <val> [NOT] CONTAINING <val>
Ê | <val> [NOT] STARTING [WITH] <val>
Ê | <val> [NOT] LIKE <val> [ESCAPE <val>]
Ê | <val> [NOT] SIMILAR TO <val> [ESCAPE <val>]
Ê | <val> <operator> {ALL | SOME | ANY} (<select_list>)
Ê | [NOT] EXISTS (<select_expr>)
Ê | [NOT] SINGULAR (<select_expr>)
Ê | (<dom_condition>)
Ê | NOT <dom_condition>
Ê | <dom_condition> OR <dom_condition>
Ê | <dom_condition> AND <dom_condition>

<operator> ::=
Ê <> | != | ^= | ~= | = | < | > | <= | >=
Ê | !< | ^< | ~< | !> | ^> | ~>

<val> ::=
Ê VALUE
Ê | <literal>
Ê | <context_var>
Ê | <expression>
Ê | NULL
Ê | NEXT VALUE FOR genname
Ê | GEN_ID(genname, <val>)
Ê | CAST(<val> AS <datatype>)
Ê | (<select_one>)
Ê | func([<val> [, <val> ...]])

Table 21. ALTER DOMAIN Statement Parameters

Parameter Description

new_name New name for domain, consisting of up to 31 characters

datatype SQL data type

literal A literal value that is compatible with datatype

context_var Any context variable whose type is compatible with datatype

precision The total number of significant digits that a value of the datatype can hold
(1..18)

scale The number of digits after the decimal point (0.. precision)

Chapter 5. Data Definition (DDL) Statements

100

Parameter Description

size The maximum size of a string in characters

charset_name The name of a valid character set, if the character set of the domain is to
be changed

subtype_num BLOB subtype number

subtype_name BLOB subtype mnemonic name

seglen Segment size (max. 65535)

select_one A scalar SELECT statement!Ñ!selecting one column and returning only one
row

select_list A SELECT statement selecting one column and returning zero or more
rows

select_expr A SELECT statement selecting one or more columns and returning zero or
more rows

expression An expression resolving to a value that is compatible with datatype

genname Sequence (generator) name

func Internal function or UDF

The ALTER DOMAIN statement enables changes to the current attributes of a domain, including its
name. You can make any number of domain alterations in one ALTER DOMAIN statement.

TO name

Use the TO clause to rename the domain, as long as there are no dependencies on the domain, i.e.
table columns, local variables or procedure arguments referencing it.

SET DEFAULT

With the SET DEFAULT clause you can set a new default value. If the domain already has a default
value, there is no need to delete it first!Ñ!it will be replaced by the new one.

DROP DEFAULT

Use this clause to delete a previously specified default value and replace it with NULL.

ADD CONSTRAINT CHECK

Use the ADD CONSTRAINT CHECK clause to add a CHECK constraint to the domain. If the domain
already has a CHECK constraint, it will have to be deleted first, using an ALTER DOMAIN statement
that includes a DROP CONSTRAINT clause.

TYPE

The TYPE clause is used to change the data type of the domain to a different, compatible one. The
system will forbid any change to the type that could result in data loss. An example would be if
the number of characters in the new type were smaller than in the existing type.

Chapter 5. Data Definition (DDL) Statements

101

"
When you alter the attributes of a domain, existing PSQL code may become
invalid. For information on how to detect it, read the piece entitled The
RDB$VALID_BLR Field in Appendix A.

Any user connected to the database can alter a domain, provided it is not prevented by
dependencies from objects to which that user does not have sufficient privileges.

What ALTER DOMAIN Cannot Alter

¥ If the domain was declared as an array, it is not possible to change its type or its dimensions;
nor can any other type be changed to an ARRAY type.

¥ In Firebird 2.5 and lower, the NOT NULL constraint can be neither enabled nor disabled for a
domain.

¥ There is no way to change the default collation without dropping the domain and recreating it
with the desired attributes.

ALTER DOMAIN Examples

1. Changing the data type to INTEGER and setting or changing the default value to 2,000:

ALTER DOMAIN CUSTNO
Ê TYPE INTEGER
Ê SET DEFAULT 2000;

2. Renaming a domain.

ALTER DOMAIN D_BOOLEAN TO D_BOOL;

3. Deleting the default value and adding a constraint for the domain:

ALTER DOMAIN D_DATE
Ê DROP DEFAULT
Ê ADD CONSTRAINT CHECK (VALUE >= date '01.01.2000');

4. Changing the CHECK constraint:

ALTER DOMAIN D_DATE
Ê DROP CONSTRAINT;

ALTER DOMAIN D_DATE
Ê ADD CONSTRAINT CHECK
Ê (VALUE BETWEEN date '01.01.1900' AND date '31.12.2100');

5. Changing the data type to increase the permitted number of characters:

Chapter 5. Data Definition (DDL) Statements

102

ALTER DOMAIN FIRSTNAME
Ê TYPE VARCHAR(50) CHARACTER SET UTF8;

See also

CREATE DOMAIN, DROP DOMAIN

5.3.3. DROP DOMAIN

Used for

Deleting an existing domain

Available in

DSQL, ESQL

Syntax

DROP DOMAIN domain_name

The DROP DOMAIN statement deletes a domain that exists in the database. It is not possible to delete a
domain if it is referenced by any database table columns or used in any PSQL module. In order to
delete a domain that is in use, all columns in all tables that refer to the domain will have to be
dropped and all references to the domain will have to be removed from PSQL modules.

Any user connected to the database can drop a domain.

Example

Deleting the COUNTRYNAME domain:

DROP DOMAIN COUNTRYNAME;

See also

CREATE DOMAIN, ALTER DOMAIN

5.4. TABLE
As a relational DBMS, Firebird stores data in tables. A table is a flat, two-dimensional structure
containing any number of rows. Table rows are often called records .

All rows in a table have the same structure and consist of columns. Table columns are often called
fields . A table must have at least one column. Each column contains a single type of SQL data.

This section describes how to create, alter and delete tables in a database.

Chapter 5. Data Definition (DDL) Statements

103

5.4.1. CREATE TABLE

Used for

creating a new table (relation)

Available in

DSQL, ESQL

Syntax

CREATE [GLOBAL TEMPORARY] TABLE tablename
Ê [EXTERNAL [FILE] ' filespec ']
Ê (<col_def> [, {<col_def> | <tconstraint>} ...])
Ê [ON COMMIT {DELETE | PRESERVE} ROWS]

<col_def> ::= <regular_col_def> | <computed_col_def>

<regular_col_def> ::=
Ê colname {<datatype> | domainname}
Ê [DEFAULT {<literal> | NULL | <context_var>}]
Ê [NOT NULL]
Ê [<col_constraint>]
Ê [COLLATE collation_name]

<computed_col_def> ::=
Ê colname [<datatype>]
Ê {COMPUTED [BY] | GENERATED ALWAYS AS} (<expression>)

<datatype> ::=
Ê {SMALLINT | INTEGER | BIGINT} [<array_dim>]
Ê | {FLOAT | DOUBLE PRECISION} [<array_dim>]
Ê | {DATE | TIME | TIMESTAMP} [<array_dim>]
Ê | {DECIMAL | NUMERIC} [(precision [, scale])] [<array_dim>]
Ê | {CHAR | CHARACTER} [VARYING] | VARCHAR} [(size)]
Ê [<array_dim>] [CHARACTER SET charset_name]
Ê | {NCHAR | NATIONAL {CHARACTER | CHAR}} [VARYING]
Ê [(size)] [<array_dim>]
Ê | BLOB [SUB_TYPE {subtype_num | subtype_name}]
Ê [SEGMENT SIZE seglen] [CHARACTER SET charset_name]
Ê | BLOB [(seglen [, subtype_num])]

<array_dim> ::= '[' [m:] n [, [m:] n ...] ']'

<col_constraint> ::=
Ê [CONSTRAINT constr_name]
Ê { PRIMARY KEY [<using_index>]
Ê | UNIQUE [<using_index>]
Ê | REFERENCES other_table [(colname)] [<using_index>]
Ê [ON DELETE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
Ê [ON UPDATE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
Ê | CHECK (<check_condition>) }

Chapter 5. Data Definition (DDL) Statements

104

<tconstraint> ::=
Ê [CONSTRAINT constr_name]
Ê { PRIMARY KEY (<col_list>) [<using_index>]
Ê | UNIQUE (<col_list>) [<using_index>]
Ê | FOREIGN KEY (<col_list>)
Ê REFERENCES other_table [(<col_list>)] [<using_index>]
Ê [ON DELETE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
Ê [ON UPDATE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
Ê | CHECK (<check_condition>) }"

<col_list> ::= colname [, colname ...]

<using_index> ::= USING
Ê [ASC[ENDING] | DESC[ENDING]] INDEX indexname

<check_condition> ::=
Ê <val> <operator> <val>
Ê | <val> [NOT] BETWEEN <val> AND <val>
Ê | <val> [NOT] IN (<val> [, <val> ...] | <select_list>)
Ê | <val> IS [NOT] NULL
Ê | <val> IS [NOT] DISTINCT FROM <val>
Ê | <val> [NOT] CONTAINING <val>
Ê | <val> [NOT] STARTING [WITH] <val>
Ê | <val> [NOT] LIKE <val> [ESCAPE <val>]
Ê | <val> [NOT] SIMILAR TO <val> [ESCAPE <val>]
Ê | <val> <operator> {ALL | SOME | ANY} (<select_list>)
Ê | [NOT] EXISTS (<select_expr>)
Ê | [NOT] SINGULAR (<select_expr>)
Ê | (<check_condition>)
Ê | NOT <check_condition>
Ê | <check_condition> OR <check_condition>
Ê | <check_condition> AND <check_condition>

<operator> ::=
Ê <> | != | ^= | ~= | = | < | > | <= | >=
Ê | !< | ^< | ~< | !> | ^> | ~>

<val> ::=
Ê colname ['[' array_idx [, array_idx ...]']']
Ê | <literal>
Ê | <context_var>
Ê | <expression>
Ê | NULL
Ê | NEXT VALUE FOR genname
Ê | GEN_ID(genname, <val>)
Ê | CAST(<val> AS <datatype>)
Ê | (<select_one>)
Ê | func([<val> [, <val> ...]])

Table 22. CREATE TABLE Statement Parameters

Chapter 5. Data Definition (DDL) Statements

105

Parameter Description

tablename Name (identifier) for the table. It may consist of up to 31 characters and
must be unique in the database.

filespec File specification (only for external tables). Full file name and path,
enclosed in single quotes, correct for the local file system and located on
a storage device that is physically connected to FirebirdÕs host computer.

colname Name (identifier) for a column in the table. May consist of up to 31
characters and must be unique in the table.

datatype SQL data type

col_constraint Column constraint

tconstraint Table constraint

constr_name The name (identifier) of a constraint. May consist of up to 31 characters.

other_table The name of the table referenced by the foreign key constraint

other_col The name of the column in other_table that is referenced by the foreign
key

literal A literal value that is allowed in the given context

context_var Any context variable whose data type is allowed in the given context

check_condition The condition applied to a CHECK constraint, that will resolve as either
true, false or NULL

collation Collation

array_dim Array dimensions

m, n Integer numbers defining the index range of an array dimension

precision The total number of significant digits that a value of the datatype can
hold (1..18)

scale The number of digits after the decimal point (0.. precision)

size The maximum size of a string in characters

charset_name The name of a valid character set, if the character set of the column is to
be different to the default character set of the database

subtype_num BLOB subtype number

subtype_name BLOB subtype mnemonic name

seglen Segment size (max. 65535)

select_one A scalar SELECT statement!Ñ!selecting one column and returning only one
row

select_list A SELECT statement selecting one column and returning zero or more
rows

select_expr A SELECT statement selecting one or more columns and returning zero or
more rows

Chapter 5. Data Definition (DDL) Statements

106

Parameter Description

expression An expression resolving to a value that is is allowed in the given context

genname Sequence (generator) name

func Internal function or UDF

The CREATE TABLE statement creates a new table. Any user can create it and its name must be unique
among the names of all tables, views and stored procedures in the database.

A table must contain at least one column that is not computed and the names of columns must be
unique in the table.

A column must have either an explicit SQL data type , the name of a domain whose attributes will be
copied for the column, or be defined as COMPUTED BY an expression (a calculated field).

A table may have any number of table constraints, including none.

Making a Column Non-nullable

In Firebird, columns are nullable by default. The optional NOT NULL clause specifies that the column
cannot take NULL in place of a value.

Character Columns

You can use the CHARACTER SET clause to specify the character set for the CHAR, VARCHAR and BLOB (text
subtype) types. If the character set is not specified, the character set specified during the creation of
the database will be used by default. If no character set was specified during the creation of the
database, the NONE character set is applied by default. In this case, data is stored and retrieved the
way it was submitted. Data in any encoding can be added to such a column, but it is not possible to
add this data to a column with a different encoding. No transliteration is performed between the
source and destination encodings, which may result in errors.

The optional COLLATE clause allows you to specify the collation sequence for character data types,
including BLOB SUB_TYPE TEXT. If no collation sequence is specified, the collation sequence that is
default for the specified character set during the creation of the column is applied by default.

Setting a DEFAULT Value

The optional DEFAULT clause allows you to specify the default value for the table column. This value
will be added to the column when an INSERT statement is executed if no value was specified for it
and that column was omitted from the INSERT command.

The default value can be a literal of a compatible type, a context variable that is type-compatible
with the data type of the column, or NULL, if the column allows it. If no default value is explicitly
specified, NULL is implied.

An expression cannot be used as a default value.

Chapter 5. Data Definition (DDL) Statements

107

Domain-based Columns

To define a column, you can use a previously defined domain. If the definition of a column is based
on a domain, it may contain a new default value, additional CHECK constraints and a COLLATE clause
that will override the values specified in the domain definition. The definition of such a column
may contain additional column constraints (for instance, NOT NULL), if the domain does not have it.

"
It is not possible to define a domain-based column that is nullable if the domain
was defined with the NOT NULL attribute. If you want to have a domain that might
be used for defining both nullable and non-nullable columns and variables, it is
better practice to make the domain nullable and apply NOT NULL in the downstream
column definitions and variable declarations.

Calculated Fields

Calculated fields can be defined with the COMPUTED [BY] or GENERATED ALWAYS AS clause (according to
the SQL:2003 standard). They mean the same. Describing the data type is not required (but possible)
for calculated fields, as the DBMS calculates and stores the appropriate type as a result of the
expression analysis. Appropriate operations for the data types included in an expression must be
specified precisely.

If the data type is explicitly specified for a calculated field, the calculation result is converted to the
specified type. This means, for instance, that the result of a numeric expression could be rendered
as a string.

In a query that selects a COMPUTED BY column, the expression is evaluated for each row of the
selected data.

!
Instead of a computed column, in some cases it makes sense to use a regular
column whose value is evaluated in triggers for adding and updating data. It may
reduce the performance of inserting/updating records, but it will increase the
performance of data selection.

Defining an ARRAY Column

¥ If the column is to be an array, the base type can be any SQL data type except BLOB and ARRAY.

¥ The dimensions of the array are specified between square brackets. (In the Syntax block these
brackets appear in quotes to distinguish them from the square brackets that identify optional
syntax elements.)

¥ For each array dimension, one or two integer numbers define the lower and upper boundaries
of its index range:

" By default, arrays are 1-based. The lower boundary is implicit and only the upper boundary
need be specified. A single number smaller than 1 defines the range num ..1 and a number
greater than 1 defines the range 1.. num .

" Two numbers separated by a colon (Ô : Õ) and optional whitespace, the second greater than the
first, can be used to define the range explicitly. One or both boundaries can be less than
zero, as long as the upper boundary is greater than the lower.

Chapter 5. Data Definition (DDL) Statements

108

¥ When the array has multiple dimensions, the range definitions for each dimension must be
separated by commas and optional whitespace.

¥ Subscripts are validated only if an array actually exists. It means that no error messages
regarding invalid subscripts will be returned if selecting a specific element returns nothing or if
an array field is NULL.

Constraints

Four types of constraints can be specified. They are:

¥ Primary key (PRIMARY KEY)

¥ Unique key (UNIQUE)

¥ Foreign key (REFERENCES)

¥ CHECK constraint (CHECK)

Constraints can be specified at column level (Òcolumn constraintsÓ) or at table level (Òtable
constraintsÓ). Table-level constraints are needed when keys (uniqueness constraint, Primary Key,
Foreign Key) are to be formed across multiple columns and when a CHECK constraint involves other
columns in the row besides the column being defined. Syntax for some types of constraint may
differ slightly according to whether the constraint is being defined at column or table level.

¥ A column-level constraint is specified during a column definition, after all column attributes
except COLLATION are specified, and can involve only the column specified in that definition

¥ Table-level constraints are specified after all of the column definitions. They are a more flexible
way to set constraints, since they can cater for constraints involving multiple columns

¥ You can mix column-level and table-level constraints in the same CREATE TABLE statement

The system automatically creates the corresponding index for a primary key (PRIMARY KEY), a
unique key (UNIQUE) and a foreign key (REFERENCES for a column-level constraint, FOREIGN KEY
REFERENCES for one at the table level).

Names for Constraints and Their Indexes

Column-level constraints and their indexes are named automatically:

¥ The constraint name has the form INTEG_n, where n represents one or more digits

¥ The index name has the form RDB$PRIMARYn (for a primary key index), RDB$FOREIGNn (for a foreign
key index) or RDB$n (for a unique key index). Again, n represents one or more digits.

Automatic naming of table-level constraints and their indexes follows the same pattern, unless the
names are supplied explicitly.

Named Constraints

A constraint can be named explicitly if the CONSTRAINT clause is used for its definition. While the
CONSTRAINT clause is optional for defining column-level constraints, it is mandatory for table-level.
By default, the constraint index will have the same name as the constraint. If a different name is
wanted for the constraint index, a USING clause can be included.

Chapter 5. Data Definition (DDL) Statements

109

The USING Clause

The USING clause allows you to specify a user-defined name for the index that is created
automatically and, optionally, to define the direction of the index!Ñ!either ascending (the default)
or descending.

PRIMARY KEY

The PRIMARY KEY constraint is built on one or more key columns , each column having the NOT NULL
constraint specified for it. The values across the key columns in any row must be unique. A table
can have only one primary key.

¥ A single-column Primary Key can be defined as a column level or a table-level constraint

¥ A multi-column Primary Key must be specified as a table-level constraint

The UNIQUE Constraint

The UNIQUE constraint defines the requirement of content uniqueness for the values in a key
throughout the table. A table can contain any number of unique key constraints.

As with the Primary Key, the Unique constraint can be multi-column. If so, it must be specified as a
table-level constraint.

NULL in Unique Keys

FirebirdÕs SQL-99-compliant rules for UNIQUE constraints allow one or more NULLs in a column with a
UNIQUE constraint. That makes it possible to define a UNIQUE constraint on a column that does not
have the NOT NULL constraint.

For UNIQUE keys that span multiple columns, the logic is a little complicated:

¥ Multiple rows having null in all the columns of the key are allowed

¥ Multiple rows having keys with different combinations of nulls and non-null values are allowed

¥ Multiple rows having the same key columns null and the rest filled with non-null values are
allowed, provided the values differ in at least one column

¥ Multiple rows having the same key columns null and the rest filled with non-null values that
are the same in every column will violate the constraint

The rules for uniqueness can be summarised thus:

In principle, all nulls are considered distinct. However, if two rows have
exactly the same key columns filled with non-null values, the NULL columns
are ignored and the uniqueness is determined on the non-null columns as
though they constituted the entire key.

Chapter 5. Data Definition (DDL) Statements

110

Illustration

RECREATE TABLE t(x int, y int, z int, unique(x,y,z));
INSERT INTO t values(NULL, 1, 1);
INSERT INTO t values(NULL, NULL, 1);
INSERT INTO t values(NULL, NULL, NULL);
INSERT INTO t values(NULL, NULL, NULL); -- Permitted
INSERT INTO t values(NULL, NULL, 1); -- Not permitted

FOREIGN KEY

A Foreign Key ensures that the participating column(s) can contain only values that also exist in the
referenced column(s) in the master table. These referenced columns are often called target
columns . They must be the primary key or a unique key in the target table. They need not have a
NOT NULL constraint defined on them although, if they are the primary key, they will, of course, have
that constraint.

The foreign key columns in the referencing table itself do not require a NOT NULL constraint.

A single-column Foreign Key can be defined in the column declaration, using the keyword
REFERENCES:

... ,
Ê ARTIFACT_ID INTEGER REFERENCES COLLECTION (ARTIFACT_ID),

The column ARTIFACT_ID in the example references a column of the same name in the table
COLLECTIONS.

Both single-column and multi-column foreign keys can be defined at the table level . For a multi-
column Foreign Key, the table-level declaration is the only option. This method also enables the
provision of an optional name for the constraint:

...
Ê CONSTRAINT FK_ARTSOURCE FOREIGN KEY(DEALER_ID, COUNTRY)
Ê REFERENCES DEALER (DEALER_ID, COUNTRY),

Notice that the column names in the referenced (ÒmasterÓ) table may differ from those in the
Foreign Key.

! If no target columns are specified, the Foreign Key automatically references the
target tableÕs Primary Key.

Foreign Key Actions

With the sub-clauses ON UPDATE and ON DELETE it is possible to specify an action to be taken on the
affected foreign key column(s) when referenced values in the master table are changed:

Chapter 5. Data Definition (DDL) Statements

111

NO ACTION

(the default) - Nothing is done

CASCADE

The change in the master table is propagated to the corresponding row(s) in the child table. If a
key value changes, the corresponding key in the child records changes to the new value; if the
master row is deleted, the child records are deleted.

SET DEFAULT

The Foreign Key columns in the affected rows will be set to their default values as they were
when the foreign key constraint was defined .

SET NULL

The Foreign Key columns in the affected rows will be set to NULL.

The specified action, or the default NO ACTION, could cause a Foreign Key column to become invalid.
For example, it could get a value that is not present in the master table, or it could become NULL
while the column has a NOT NULL constraint. Such conditions will cause the operation on the master
table to fail with an error message.

Example

...
Ê CONSTRAINT FK_ORDERS_CUST
Ê FOREIGN KEY (CUSTOMER) REFERENCES CUSTOMERS (ID)
Ê ON UPDATE CASCADE ON DELETE SET NULL

CHECK Constraint

The CHECK constraint defines the condition the values inserted in this column must satisfy. A
condition is a logical expression (also called a predicate) that can return the TRUE, FALSE and
UNKNOWN values. A condition is considered satisfied if the predicate returns TRUE or value
UNKNOWN (equivalent to NULL). If the predicate returns FALSE, the value will not be accepted. This
condition is used for inserting a new row into the table (the INSERT statement) and for updating the
existing value of the table column (the UPDATE statement) and also for statements where one of these
actions may take place (UPDATE OR INSERT, MERGE).

"
A CHECK constraint on a domain-based column does not replace an existing CHECK
condition on the domain, but becomes an addition to it. The Firebird engine has no
way, during definition, to verify that the extra CHECK does not conflict with the
existing one.

CHECK conditions!Ñ!whether defined at table level or column level!Ñ!refer to table columns by their
names. The use of the keyword VALUE as a placeholder, as in domain CHECK constraints, is not valid in
the context of defining column constraints.

Example

with two column-level constraints and one at table-level:

Chapter 5. Data Definition (DDL) Statements

112

CREATE TABLE PLACES (
Ê ...
Ê LAT DECIMAL(9, 6) CHECK (ABS(LAT) <= 90),
Ê LON DECIMAL(9, 6) CHECK (ABS(LON) <= 180),
Ê ...
Ê CONSTRAINT CHK_POLES CHECK (ABS(LAT) < 90 OR LON = 0)
);

Global Temporary Tables (GTT)

Global temporary tables have persistent metadata, but their contents are transaction-bound (the
default) or connection-bound. Every transaction or connection has its own private instance of a
GTT, isolated from all the others. Instances are only created if and when the GTT is referenced. They
are destroyed when the transaction ends or on disconnection. The metadata of a GTT can be
modified or removed using ALTER TABLE and DROP TABLE, respectively.

Syntax

CREATE GLOBAL TEMPORARY TABLE tablename
Ê (<column_def> [, {<column_def> | <table_constraint>} ...])
Ê [ON COMMIT {DELETE | PRESERVE} ROWS]

!

Syntax notes

¥ ON COMMIT DELETE ROWS creates a transaction-level GTT (the default), ON COMMIT
PRESERVE ROWS a connection-level GTT

¥ An EXTERNAL [FILE] clause is not allowed in the definition of a global temporary
table

Restrictions on GTTs

GTTs can be Òdressed upÓ with all the features and paraphernalia of ordinary tables (keys,
references, indexes, triggers and so on) but there are a few restrictions:

¥ GTTs and regular tables cannot reference one another

¥ A connection-bound (Ò PRESERVE ROWSÓ) GTT cannot reference a transaction-bound (Ò DELETE ROWSÓ)
GTT

¥ Domain constraints cannot reference any GTT

¥ The destruction of a GTT instance at the end of its life cycle does not cause any BEFORE/AFTER
delete triggers to fire

Chapter 5. Data Definition (DDL) Statements

113

!

In an existing database, it is not always easy to distinguish a regular table from a
GTT, or a transaction-level GTT from a connection-level GTT. Use this query to find
out what type of table you are looking at:

select t.rdb$type_name
from rdb$relations r
join rdb$types t on r.rdb$relation_type = t.rdb$type
where t.rdb$field_name = 'RDB$RELATION_TYPE'
and r.rdb$relation_name = 'TABLENAME'

For an overview of the types of all the relations in the database:

select r.rdb$relation_name, t.rdb$type_name
from rdb$relations r
join rdb$types t on r.rdb$relation_type = t.rdb$type
where t.rdb$field_name = 'RDB$RELATION_TYPE'
and coalesce (r.rdb$system_flag, 0) = 0

The RDB$TYPE_NAME field will show PERSISTENT for a regular table, VIEW for a view,
GLOBAL_TEMPORARY_PRESERVE for a connection-bound GTT and
GLOBAL_TEMPORARY_DELETE for a transaction_bound GTT.

External Tables

The optional EXTERNAL [FILE] clause specifies that the table is stored outside the database in an
external text file of fixed-length records. The columns of a table stored in an external file can be of
any type except BLOB or ARRAY, although for most purposes, only columns of CHAR types would be
useful.

All you can do with a table stored in an external file is insert new rows (INSERT) and query the data
(SELECT). Updating existing data (UPDATE) and deleting rows (DELETE) are not possible.

A file that is defined as an external table must be located on a storage device that is physically
present on the machine where the Firebird server runs and, if the parameter ExternalFileAccess in
the firebird.conf configuration file is Restrict , it must be in one of the directories listed there as
the argument for Restrict . If the file does not exist yet, Firebird will create it on first access.

Chapter 5. Data Definition (DDL) Statements

114

"

The ability to use external files for a table depends on the value set for the
ExternalFileAccess parameter in firebird.conf :

¥ If it is set to None (the default), any attempt to access an external file will be
denied.

¥ The Restrict setting is recommended, for restricting external file access to
directories created explicitly for the purpose by the server administrator. For
example:

" ExternalFileAccess = Restrict externalfiles will restrict access to a
directory named externalfiles directly beneath the Firebird root directory

" ExternalFileAccess = d:\databases\outfiles; e:\infiles will restrict access
to just those two directories on the Windows host server. Note that any
path that is a network mapping will not work. Paths enclosed in single or
double quotes will not work, either.

¥ If this parameter is set to Full , external files may be accessed anywhere on the
host file system. It creates a security vulnerability and is not recommended.

External File Format

The ÒrowÓ format of the external table is fixed length. There are no field delimiters: both field and
row boundaries are determined by maximum sizes, in bytes, of the field definitions. It is important
to keep this in mind, both when defining the structure of the external table and when designing an
input file for an external table that is to import data from another application. The ubiquitous
Ò.csvÓ format, for example, is of no use as an input file and cannot be generated directly into an
external file.

The most useful data type for the columns of external tables is the fixed-length CHAR type, of suitable
lengths for the data they are to carry. Date and number types are easily cast to and from strings
whereas, unless the files are to be read by another Firebird database, the native data types will
appear to external applications as unparseable ÒalphabettiÓ.

Of course, there are ways to manipulate typed data so as to generate output files from Firebird that
can be read directly as input files to other applications, using stored procedures, with or without
employing external tables. Such techniques are beyond the scope of a language reference. Here, we
provide some guidelines and tips for producing and working with simple text files, since the
external table feature is often used as an easy way to produce or read transaction-independent logs
that can be studied off-line in a text editor or auditing application.

Row Delimiters

Generally, external files are more useful if rows are separated by a delimiter, in the form of a
ÒnewlineÓ sequence that is recognised by reader applications on the intended platform. For most
contexts on Windows, it is the two-byte 'CRLF' sequence, carriage return (ASCII code decimal 13)
and line feed (ASCII code decimal 10). On POSIX, LF on its own is usual; for some MacOSX
applications, it may be LFCR. There are various ways to populate this delimiter column. In our
example below, it is done by using a BEFORE INSERT trigger and the internal function ASCII_CHAR.

Chapter 5. Data Definition (DDL) Statements

115

External Table Example

For our example, we will define an external log table that might be used by an exception handler in
a stored procedure or trigger. The external table is chosen because the messages from any handled
exceptions will be retained in the log, even if the transaction that launched the process is
eventually rolled back because of another, unhandled exception. For demonstration purposes, it
has just two data columns, a time stamp and a message. The third column stores the row delimiter:

CREATE TABLE ext_log
Ê EXTERNAL FILE 'd:\externals\log_me.txt' (
Ê stamp CHAR (24),
Ê message CHAR(100),
Ê crlf CHAR(2) -- for a Windows context
);
COMMIT;

Now, a trigger, to write the timestamp and the row delimiter each time a message is written to the
file:

SET TERM ^;
CREATE TRIGGER bi_ext_log FOR ext_log
ACTIVE BEFORE INSERT
AS
BEGIN
Ê IF (new.stamp is NULL) then
Ê new.stamp = CAST (CURRENT_TIMESTAMP as CHAR(24));
Ê new.crlf = ASCII_CHAR(13) || ASCII_CHAR(10);
END ^
COMMIT ^
SET TERM ;^

Inserting some records (which could have been done by an exception handler or a fan of
Shakespeare):

insert into ext_log (message)
values('Shall I compare thee to a summer''s day?');
insert into ext_log (message)
values('Thou art more lovely and more temperate');

The output:

2015-10-07 15:19:03.4110Shall I compare thee to a summer's day?
2015-10-07 15:19:58.7600Thou art more lovely and more temperate

Chapter 5. Data Definition (DDL) Statements

116

CREATE TABLE Examples

1. Creating the COUNTRY table with the primary key specified as a column constraint.

CREATE TABLE COUNTRY (
Ê COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,
Ê CURRENCY VARCHAR(10) NOT NULL
);

2. Creating the STOCK table with the named primary key specified at the column level and the
named unique key specified at the table level.

CREATE TABLE STOCK (
Ê MODEL SMALLINT NOT NULL CONSTRAINT PK_STOCK PRIMARY KEY,
Ê MODELNAME CHAR(10) NOT NULL,
Ê ITEMID INTEGER NOT NULL,
Ê CONSTRAINT MOD_UNIQUE UNIQUE (MODELNAME, ITEMID)
);

3. Creating the JOB table with a primary key constraint spanning two columns, a foreign key
constraint for the COUNTRY table and a table-level CHECK constraint. The table also contains an
array of 5 elements.

CREATE TABLE JOB (
Ê JOB_CODE JOBCODE NOT NULL,
Ê JOB_GRADE JOBGRADE NOT NULL,
Ê JOB_COUNTRY COUNTRYNAME,
Ê JOB_TITLE VARCHAR(25) NOT NULL,
Ê MIN_SALARY NUMERIC(18, 2) DEFAULT 0 NOT NULL,
Ê MAX_SALARY NUMERIC(18, 2) NOT NULL,
Ê JOB_REQUIREMENT BLOB SUB_TYPE 1,
Ê LANGUAGE_REQ VARCHAR(15) [1:5],
Ê PRIMARY KEY (JOB_CODE, JOB_GRADE),
Ê FOREIGN KEY (JOB_COUNTRY) REFERENCES COUNTRY (COUNTRY)
Ê ON UPDATE CASCADE
Ê ON DELETE SET NULL,
Ê CONSTRAINT CHK_SALARY CHECK (MIN_SALARY < MAX_SALARY)
);

4. Creating the PROJECT table with primary, foreign and unique key constraints with custom index
names specified with the USING clause.

Chapter 5. Data Definition (DDL) Statements

117

CREATE TABLE PROJECT (
Ê PROJ_ID PROJNO NOT NULL,
Ê PROJ_NAME VARCHAR(20) NOT NULL UNIQUE USING DESC INDEX IDX_PROJNAME,
Ê PROJ_DESC BLOB SUB_TYPE 1,
Ê TEAM_LEADER EMPNO,
Ê PRODUCT PRODTYPE,
Ê CONSTRAINT PK_PROJECT PRIMARY KEY (PROJ_ID) USING INDEX IDX_PROJ_ID,
Ê FOREIGN KEY (TEAM_LEADER) REFERENCES EMPLOYEE (EMP_NO)
Ê USING INDEX IDX_LEADER
);

5. Creating the SALARY_HISTORY table with two computed fields. The first one is declared according
to the SQL:2003 standard, while the second one is declared according to the traditional
declaration of computed fields in Firebird.

CREATE TABLE SALARY_HISTORY (
Ê EMP_NO EMPNO NOT NULL,
Ê CHANGE_DATE TIMESTAMP DEFAULT 'NOW' NOT NULL,
Ê UPDATER_ID VARCHAR(20) NOT NULL,
Ê OLD_SALARY SALARY NOT NULL,
Ê PERCENT_CHANGE DOUBLE PRECISION DEFAULT 0 NOT NULL,
Ê SALARY_CHANGE GENERATED ALWAYS AS
Ê (OLD_SALARY * PERCENT_CHANGE / 100),
Ê NEW_SALARY COMPUTED BY
Ê (OLD_SALARY + OLD_SALARY * PERCENT_CHANGE / 100)
);

6. Creating a connection-scoped global temporary table.

CREATE GLOBAL TEMPORARY TABLE MYCONNGTT (
Ê ID INTEGER NOT NULL PRIMARY KEY,
Ê TXT VARCHAR(32),
Ê TS TIMESTAMP DEFAULT CURRENT_TIMESTAMP)
ON COMMIT PRESERVE ROWS;

7. Creating a transaction-scoped global temporary table that uses a foreign key to reference a
connection-scoped global temporary table. The ON COMMIT sub-clause is optional because DELETE
ROWS is the default.

CREATE GLOBAL TEMPORARY TABLE MYTXGTT (
Ê ID INTEGER NOT NULL PRIMARY KEY,
Ê PARENT_ID INTEGER NOT NULL REFERENCES MYCONNGTT(ID),
Ê TXT VARCHAR(32),
Ê TS TIMESTAMP DEFAULT CURRENT_TIMESTAMP
) ON COMMIT DELETE ROWS;

Chapter 5. Data Definition (DDL) Statements

118

5.4.2. ALTER TABLE

Used for

altering the structure of a table.

Available in

DSQL, ESQL

Syntax

ALTER TABLE tablename
Ê <operation> [, <operation> ...]

<operation> ::=
Ê ADD <col_def>
Ê | ADD <tconstraint>
Ê | DROP colname
Ê | DROP CONSTRAINT constr_name
Ê | ALTER [COLUMN] colname <col_mod>

<col_def> ::= <regular_col_def> | <computed_col_def>

<regular_col_def> ::=
Ê colname {<datatype> | domainname}
Ê [DEFAULT {<literal> | NULL | <context_var>}]
Ê [NOT NULL]
Ê [<col_constraint>]
Ê [COLLATE collation_name]

<computed_col_def> ::=
Ê colname [<datatype>]
Ê {COMPUTED [BY] | GENERATED ALWAYS AS} (<expression>)

<col_mod> ::= <regular_col_mod> | <computed_col_mod>

<regular_col_mod> ::=
Ê TO newname
Ê | POSITION newpos
Ê | TYPE {<datatype> | domainname}
Ê | SET DEFAULT {<literal> | NULL | <context_var>}
Ê | DROP DEFAULT

<computed_col_mod> ::=
Ê TO newname
Ê | POSITION newpos
Ê | [TYPE <datatype>] {COMPUTED [BY] | GENERATED ALWAYS AS} (<expression>)

<datatype> ::=
Ê {SMALLINT | INTEGER | BIGINT} [<array_dim>]
Ê | {FLOAT | DOUBLE PRECISION} [<array_dim>]
Ê | {DATE | TIME | TIMESTAMP} [<array_dim>]

Chapter 5. Data Definition (DDL) Statements

119

Ê | {DECIMAL | NUMERIC} [(precision [, scale])] [<array_dim>]
Ê | {CHAR | CHARACTER} [VARYING] | VARCHAR} [(size)]
Ê [<array_dim>] [CHARACTER SET charset_name]
Ê | {NCHAR | NATIONAL {CHARACTER | CHAR}} [VARYING]
Ê [(size)] [<array_dim>]
Ê | BLOB [SUB_TYPE {subtype_num | subtype_name}]
Ê [SEGMENT SIZE seglen] [CHARACTER SET charset_name]
Ê | BLOB [(seglen [, subtype_num])]

<array_dim> ::= '[' [m:] n [,[m:] n ...] ']'

<col_constraint> ::=
Ê [CONSTRAINT constr_name]
Ê { PRIMARY KEY [<using_index>]
Ê | UNIQUE [<using_index>]
Ê | REFERENCES other_table [(colname)] [<using_index>]
Ê [ON DELETE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
Ê [ON UPDATE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
Ê | CHECK (<check_condition>) }

<tconstraint> ::=
Ê [CONSTRAINT constr_name]
Ê { PRIMARY KEY (<col_list>) [<using_index>]
Ê | UNIQUE (<col_list>) [<using_index>]
Ê | FOREIGN KEY (<col_list>)
Ê REFERENCES other_table [(<col_list>)] [<using_index>]
Ê [ON DELETE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
Ê [ON UPDATE {NO ACTION | CASCADE | SET DEFAULT | SET NULL}]
Ê | CHECK (<check_condition>) }

<col_list> ::= colname [, colname ...]

<using_index> ::= USING
Ê [ASC[ENDING] | DESC[ENDING]] INDEX indexname

<check_condition> ::=
Ê <val> <operator> <val>
Ê | <val> [NOT] BETWEEN <val> AND <val>
Ê | <val> [NOT] IN (<val> [, <val> ...] | <select_list>)
Ê | <val> IS [NOT] NULL
Ê | <val> IS [NOT] DISTINCT FROM <val>
Ê | <val> [NOT] CONTAINING <val>
Ê | <val> [NOT] STARTING [WITH] <val>
Ê | <val> [NOT] LIKE <val> [ESCAPE <val>]
Ê | <val> [NOT] SIMILAR TO <val> [ESCAPE <val>]
Ê | <val> <operator> {ALL | SOME | ANY} (<select_list>)
Ê | [NOT] EXISTS (<select_expr>)
Ê | [NOT] SINGULAR (<select_expr>)
Ê | (<search_condition>)
Ê | NOT <search_condition>
Ê | <search_condition> OR <search_condition>

Chapter 5. Data Definition (DDL) Statements

120

Ê | <search_condition> AND <search_condition>

<operator> ::=
Ê <> | != | ^= | ~= | = | < | > | <= | >=
Ê | !< | ^< | ~< | !> | ^> | ~>

<val> ::=
Ê colname ['[' array_idx [, array_idx ...]']']
Ê | <literal>
Ê | <context_var>
Ê | <expression>
Ê | NULL
Ê | NEXT VALUE FOR genname
Ê | GEN_ID(genname, <val>)
Ê | CAST(<val> AS <datatype>)
Ê | (<select_one>)
Ê | func([<val> [, <val> ...]])

Table 23. ALTER TABLE Statement Parameters

Parameter Description

tablename Name (identifier) of the table

operation One of the available operations altering the structure of the table

colname Name (identifier) for a column in the table, max. 31 characters. Must be
unique in the table.

newname New name (identifier) for the column, max. 31 characters. Must be
unique in the table.

newpos The new column position (an integer between 1 and the number of
columns in the table)

col_constraint Column constraint

tconstraint Table constraint

constr_name The name (identifier) of a constraint. May consist of up to 31 characters.

other_table The name of the table referenced by the foreign key constraint

literal A literal value that is allowed in the given context

context_var A context variable whose type is allowed in the given context

check_condition The condition of a CHECK constraint that will be satisfied if it evaluates to
TRUE or UNKNOWN/NULL

collation Name of a collation sequence that is valid for charset_name , if it is
supplied with datatype or, otherwise, is valid for the default character set
of the database

array_dim Array dimensions

m, n Integer numbers defining the index range of an array dimension

Chapter 5. Data Definition (DDL) Statements

121

Parameter Description

precision The total number of significant digits that a value of the datatype can hold
(1..18)

scale The number of digits after the decimal point (0.. precision)

size The maximum size of a string in characters

charset_name The name of a valid character set, if the character set of the column is to
be different to the default character set of the database

subtype_num BLOB subtype number

subtype_name BLOB subtype mnemonic name

seglen Segment size (max. 65535)

select_one A scalar SELECT statement!Ñ!selecting one column and returning only one
row

select_list A SELECT statement selecting one column and returning zero or more
rows

select_expr A SELECT statement selecting one or more columns and returning zero or
more rows

expression An expression resolving to a value that is is allowed in the given context

genname Sequence (generator) name

func Internal function or UDF

The ALTER TABLE statement changes the structure of an existing table. With one ALTER TABLE
statement it is possible to perform multiple operations, adding/dropping columns and constraints
and also altering column specifications.

Multiple operations in an ALTER TABLE statement are separated with commas.

Version Count Increments

Some changes in the structure of a table increment the metadata change counter (Òversion countÓ)
assigned to every table. The number of metadata changes is limited to 255 for each table. Once the
counter reaches the 255 limit, you will not be able to make any further changes to the structure of
the table without resetting the counter.

To reset the metadata change counter

You should back up and restore the database using the gbak utility.

The ADD Clause

With the ADD clause you can add a new column or a new table constraint. The syntax for defining
the column and the syntax of defining the table constraint correspond with those described for
CREATE TABLE statement.

Chapter 5. Data Definition (DDL) Statements

122

Effect on Version Count

¥ Each time a new column is added, the metadata change counter is increased by one

¥ Adding a new table constraint does not increase the metadata change counter

#

Points to Be Aware of

1. Be careful about adding a new column with the NOT NULL constraint set. It may
lead to breaking the logical integrity of data, since you will have existing
records containing NULL in a non-nullable column. When adding a non-nullable
column, it is recommended either to set a default value for it or to update the
column in existing rows with a non-null value.

2. When a new CHECK constraint is added, existing data is not tested for
compliance. Prior testing of existing data against the new CHECK expression is
recommended.

The DROP Clause

The DROP <column name> clause deletes the specified column from the table. An attempt to drop a
column will fail if anything references it. Consider the following items as sources of potential
dependencies:

¥ column or table constraints

¥ indexes

¥ stored procedures and triggers

¥ views

Effect on Version Count

¥ Each time a column is dropped, the tableÕs metadata change counter is increased by one.

The DROP CONSTRAINT Clause

The DROP CONSTRAINT clause deletes the specified column-level or table-level constraint.

A PRIMARY KEY or UNIQUE key constraint cannot be deleted if it is referenced by a FOREIGN KEY
constraint in another table. It will be necessary to drop that FOREIGN KEY constraint before
attempting to drop the PRIMARY KEY or UNIQUE key constraint it references.

Effect on Version Count

¥ Deleting a column constraint or a table constraint does not increase the metadata change
counter.

The ALTER [COLUMN] Clause

With the ALTER [COLUMN] clause, attributes of existing columns can be modified without the need to
drop and re-add the column. Permitted modifications are:

¥ change the name (does not affect the metadata change counter)

Chapter 5. Data Definition (DDL) Statements

123

¥ change the data type (increases the metadata change counter by one)

¥ change the column position in the column list of the table (does not affect the metadata change
counter)

¥ delete the default column value (does not affect the metadata change counter)

¥ set a default column value or change the existing default (does not affect the metadata change
counter)

¥ change the type and expression for a computed column (does not affect the metadata change
counter)

Renaming a Column: the TO Keyword

The TO keyword with a new identifier renames an existing column. The table must not have an
existing column that has the same identifier.

It will not be possible to change the name of a column that is included in any constraint: PRIMARY
KEY, UNIQUE key, FOREIGN KEY, column constraint or the CHECK constraint of the table.

Renaming a column will also be disallowed if the column is used in any trigger, stored procedure or
view.

Changing the Data Type of a Column: the TYPE Keyword

The keyword TYPE changes the data type of an existing column to another, allowable type. A type
change that might result in data loss will be disallowed. As an example, the number of characters in
the new type for a CHAR or VARCHAR column cannot be smaller than the existing specification for it.

If the column was declared as an array, no change to its type or its number of dimensions is
permitted.

The data type of a column that is involved in a foreign key, primary key or unique constraint cannot
be changed at all.

Changing the Position of a Column: the POSITION Keyword

The POSITION keyword changes the position of an existing column in the notional Òleft-to-rightÓ
layout of the record.

Numbering of column positions starts at 1.

¥ If a position less than 1 is specified, an error message will be returned

¥ If a position number is greater than the number of columns in the table, its new position will be
adjusted silently to match the number of columns.

The DROP DEFAULT and SET DEFAULT Clauses

The optional DROP DEFAULT clause deletes the default value for the column if it was put there
previously by a CREATE TABLE or ALTER TABLE statement.

¥ If the column is based on a domain with a default value, the default value will revert to the

Chapter 5. Data Definition (DDL) Statements

124

domain default

¥ An execution error will be raised if an attempt is made to delete the default value of a column
which has no default value or whose default value is domain-based

The optional SET DEFAULT clause sets a default value for the column. If the column already has a
default value, it will be replaced with the new one. The default value applied to a column always
overrides one inherited from a domain.

The COMPUTED [BY] or GENERATED ALWAYS AS Clauses

The data type and expression underlying a computed column can be modified using a COMPUTED
[BY] or GENERATED ALWAYS AS clause in the ALTER TABLE ALTER [COLUMN] statement. Converting a
regular column to a computed one and vice versa are not permitted.

Attributes that Cannot Be Altered

The following alterations are not supported:

¥ Enabling or disabling the NOT NULL constraint on a column

¥ Changing the default collation for a character type column

Only the table owner and administrators have the authority to use ALTER TABLE.

Examples Using ALTER TABLE

1. Adding the CAPITAL column to the COUNTRY table.

ALTER TABLE COUNTRY
Ê ADD CAPITAL VARCHAR(25);

2. Adding the CAPITAL column with the UNIQUE constraint and deleting the CURRENCY column.

ALTER TABLE COUNTRY
Ê ADD CAPITAL VARCHAR(25) NOT NULL UNIQUE,
Ê DROP CURRENCY;

3. Adding the CHK_SALARY check constraint and a foreign key to the JOB table.

ALTER TABLE JOB
Ê ADD CONSTRAINT CHK_SALARY CHECK (MIN_SALARY < MAX_SALARY),
Ê ADD FOREIGN KEY (JOB_COUNTRY) REFERENCES COUNTRY (COUNTRY);

4. Setting default value for the MODEL field, changing the type of the ITEMID column and renaming
the MODELNAME column.

Chapter 5. Data Definition (DDL) Statements

125

ALTER TABLE STOCK
Ê ALTER COLUMN MODEL SET DEFAULT 1,
Ê ALTER COLUMN ITEMID TYPE BIGINT,
Ê ALTER COLUMN MODELNAME TO NAME;

5. Changing the computed columns NEW_SALARY and SALARY_CHANGE.

ALTER TABLE SALARY_HISTORY
Ê ALTER NEW_SALARY GENERATED ALWAYS AS
Ê (OLD_SALARY + OLD_SALARY * PERCENT_CHANGE / 100),
Ê ALTER SALARY_CHANGE COMPUTED BY
Ê (OLD_SALARY * PERCENT_CHANGE / 100);

See also

CREATE TABLE, DROP TABLE, CREATE DOMAIN

5.4.3. DROP TABLE

Used for

deleting a table

Available in

DSQL, ESQL

Syntax

DROP TABLE tablename

Table 24. DROP TABLE Statement Parameter

Parameter Description

tablename Name (identifier) of the table

The DROP TABLE statement deletes an existing table. If the table has dependencies, the DROP TABLE
statement will fail with an execution error.

When a table is dropped, all triggers for its events and indexes built for its fields will be deleted as
well.

Only the table owner and administrators have the authority to use DROP TABLE.

Example

Deleting the COUNTRY table.

DROP TABLE COUNTRY;

Chapter 5. Data Definition (DDL) Statements

126

See also

CREATE TABLE, ALTER TABLE, RECREATE TABLE

5.4.4. RECREATE TABLE

Used for

creating a new table (relation) or recreating an existing one

Available in

DSQL

Syntax

RECREATE [GLOBAL TEMPORARY] TABLE tablename
Ê [EXTERNAL [FILE] ' filespec ']
Ê (<col_def> [, {<col_def> | <tconstraint>} ...])
Ê [ON COMMIT {DELETE | PRESERVE} ROWS]

See the CREATE TABLE section for the full syntax of CREATE TABLE and descriptions of defining tables,
columns and constraints.

RECREATE TABLE creates or recreates a table. If a table with this name already exists, the RECREATE
TABLE statement will try to drop it and create a new one. Existing dependencies will prevent the
statement from executing.

Example

Creating or recreating the COUNTRY table.

RECREATE TABLE COUNTRY (
Ê COUNTRY COUNTRYNAME NOT NULL PRIMARY KEY,
Ê CURRENCY VARCHAR(10) NOT NULL
);

See also

CREATE TABLE, DROP TABLE

5.5. INDEX
An index is a database object used for faster data retrieval from a table or for speeding up the
sorting of query. Indexes are used also to enforce the refererential integrity constraints PRIMARY KEY,
FOREIGN KEY and UNIQUE.

This section describes how to create indexes, activate and deactivate them, delete them and collect
statistics (recalculate selectivity) for them.

Chapter 5. Data Definition (DDL) Statements

127

5.5.1. CREATE INDEX

Used for

Creating an index for a table

Available in

DSQL, ESQL

Syntax

CREATE [UNIQUE] [ASC[ENDING] | DESC[ENDING]]
Ê INDEX indexname ON tablename
Ê {(col [, col É]) | COMPUTED BY (<expression>)}

Table 25. CREATE INDEX Statement Parameters

Parameter Description

indexname Index name. It may consist of up to 31 characters

tablename The name of the table for which the index is to be built

col Name of a column in the table. Columns of the types BLOB and ARRAY and
computed fields cannot be used in an index

expression The expression that will compute the values for a computed index, also
known as an Òexpression indexÓ

The CREATE INDEX statement creates an index for a table that can be used to speed up searching,
sorting and grouping. Indexes are created automatically in the process of defining constraints, such
as primary key, foreign key or unique constraints.

An index can be built on the content of columns of any data type except for BLOB and arrays. The
name (identifier) of an index must be unique among all index names.

!

Key Indexes

When a primary key, foreign key or unique constraint is added to a table or
column, an index with the same name is created automatically, without an explicit
directive from the designer. For example, the PK_COUNTRY index will be created
automatically when you execute and commit the following statement:

ALTER TABLE COUNTRY ADD CONSTRAINT PK_COUNTRY
Ê PRIMARY KEY (ID);

Unique Indexes

Specifying the keyword UNIQUE in the index creation statement creates an index in which
uniqueness will be enforced throughout the table. The index is referred to as a Òunique indexÓ. A
unique index is not a constraint.

Chapter 5. Data Definition (DDL) Statements

128

Unique indexes cannot contain duplicate key values (or duplicate key value combinations, in the
case of compound , or multi-column, or multi-segment) indexes. Duplicated NULLs are permitted, in
accordance with the SQL:99 standard, in both single-segment and multi-segment indexes.

Index Direction

All indexes in Firebird are uni-directional. An index may be constructed from the lowest value to
the highest (ascending order) or from the highest value to the lowest (descending order). The
keywords ASC[ENDING] and DESC[ENDING] are used to specify the direction of the index. The default
index order is ASC[ENDING]. It is quite valid to define both an ascending and a descending index on
the same column or key set.

! A descending index can be useful on a column that will be subjected to searches on
the high values (ÒnewestÓ, maximum, etc.)

Computed (Expression) Indexes

In creating an index, you can use the COMPUTED BY clause to specify an expression instead of one or
more columns. Computed indexes are used in queries where the condition in a WHERE, ORDER BY or
GROUP BY clause exactly matches the expression in the index definition. The expression in a
computed index may involve several columns in the table.

! You can actually create a computed index on a computed field, but the index will
never be used.

Limits on Indexes

Certain limits apply to indexes.

The maximum length of a key in an index is limited to $ of the page size.

Maximum Indexes per Table

The number of indexes that can be accommodated for each table is limited. The actual maximum
for a specific table depends on the page size and the number of columns in the indexes.

Table 26. Maximum Indexes per Table

Page
Size

Number of Indexes Depending on Column
Count

Single 2-Column 3-Column

4096 203 145 113

8192 408 291 227

16384 818 584 454

Character Index Limits

The maximum indexed string length is 9 bytes less than the maximum key length. The maximum

Chapter 5. Data Definition (DDL) Statements

129

indexable string length depends on the page size and the character set.

Table 27. Maximum indexable (VAR)CHAR length

Page
Size

Maximum Indexable String Length by Charset
Type

1 byte/char 2 byte/char 3 byte/char 4 byte/char

4096 1015 507 338 253

8192 2039 1019 679 509

16384 4087 2043 1362 1021

Only the table owner and administrators have the authority to use CREATE INDEX.

Examples Using CREATE INDEX

1. Creating an index for the UPDATER_ID column in the SALARY_HISTORY table

CREATE INDEX IDX_UPDATER
Ê ON SALARY_HISTORY (UPDATER_ID);

2. Creating an index with keys sorted in the descending order for the CHANGE_DATE column in the
SALARY_HISTORY table

CREATE DESCENDING INDEX IDX_CHANGE
Ê ON SALARY_HISTORY (CHANGE_DATE);

3. Creating a multi-segment index for the ORDER_STATUS, PAID columns in the SALES table

CREATE INDEX IDX_SALESTAT
Ê ON SALES (ORDER_STATUS, PAID);

4. Creating an index that does not permit duplicate values for the NAME column in the COUNTRY table

CREATE UNIQUE INDEX UNQ_COUNTRY_NAME
Ê ON COUNTRY (NAME);

5. Creating a computed index for the PERSONS table

CREATE INDEX IDX_NAME_UPPER ON PERSONS
Ê COMPUTED BY (UPPER (NAME));

An index like this can be used for a case-insensitive search:

Chapter 5. Data Definition (DDL) Statements

130

SELECT *
FROM PERSONS
WHERE UPPER(NAME) STARTING WITH UPPER('Iv');

See also

ALTER INDEX, DROP INDEX

5.5.2. ALTER INDEX

Used for

Activating or deactivating an index; rebuilding an index

Available in

DSQL, ESQL

Syntax

ALTER INDEX indexname {ACTIVE | INACTIVE}

Table 28. ALTER INDEX Statement Parameter

Parameter Description

indexname Index name

The ALTER INDEX statement activates or deactivates an index. There is no facility on this statement
for altering any attributes of the index.

¥ With the INACTIVE option, the index is switched from the active to inactive state. The effect is
similar to the DROP INDEX statement except that the index definition remains in the database.
Altering a constraint index to the inactive state is not permitted.

An active index can be deactivated if there are no queries using that index; otherwise, an
Òobject in useÓ error is returned.

Activating an inactive index is also safe. However, if there are active transactions modifying the
table, the transaction containing the ALTER INDEX statement will fail if it has the NOWAIT attribute.
If the transaction is in WAIT mode, it will wait for completion of concurrent transactions.

On the other side of the coin, if our ALTER INDEX succeeds and starts to rebuild the index at
COMMIT, other transactions modifying that table will fail or wait, according to their WAIT/NO WAIT
attributes. The situation is exactly the same for CREATE INDEX.

!
How is it Useful?

It might be useful to switch an index to the inactive state whilst inserting,
updating or deleting a large batch of records in the table that owns the index.

¥ With the ACTIVE option, if the index is in the inactive state, it will be switched to active state and

Chapter 5. Data Definition (DDL) Statements

131

the system rebuilds the index.

!

How is it Useful?

Even if the index is active when ALTER INDEX É ACTIVE is executed, the index
will be rebuilt. Rebuilding indexes can be a useful piece of houskeeping to do,
occasionally, on the indexes of a large table in a database that has frequent
inserts, updates or deletes but is infrequently restored.

Use of ALTER INDEX on a Constraint Index

Altering the enforcing index of a PRIMARY KEY, FOREIGN KEY or UNIQUE constraint to INACTIVE is not
permitted. However, ALTER INDEX É ACTIVE works just as well with constraint indexes as it does
with others, as an index rebuilding tool.

Only the table owner and administrators have the authority to use ALTER INDEX.

ALTER INDEX Examples

1. Deactivating the IDX_UPDATER index

ALTER INDEX IDX_UPDATER INACTIVE;

2. Switching the IDX_UPDATER index back to the active state and rebuilding it

ALTER INDEX IDX_UPDATER ACTIVE;

See also

CREATE INDEX, DROP INDEX, SET STATISTICS

5.5.3. DROP INDEX

Used for

Deleting an index

Available in

DSQL, ESQL

Syntax

DROP INDEX indexname

Table 29. DROP INDEX Statement Parameter

Parameter Description

indexname Index name

Chapter 5. Data Definition (DDL) Statements

132

The DROP INDEX statement deletes the named index from the database.

!
A constraint index cannot deleted using DROP INDEX. Constraint indexes are
dropped during the process of executing the command ALTER TABLE É DROP
CONSTRAINT É.

Only the table owner and administrators have the authority to use DROP INDEX.

DROP INDEX Example

Deleting the IDX_UPDATER index

DROP INDEX IDX_UPDATER;

See also

CREATE INDEX, ALTER INDEX

5.5.4. SET STATISTICS

Used for

Recalculating the selectivity of an index

Available in

DSQL, ESQL

Syntax

SET STATISTICS INDEX indexname

Table 30. SET STATISTICS Statement Parameter

Parameter Description

indexname Index name

The SET STATISTICS statement recalculates the selectivity of the specified index.

Index Selectivity

The selectivity of an index is the result of evaluating the number of rows that can be selected in a
search on every index value. A unique index has the maximum selectivity because it is impossible
to select more than one row for each value of an index key if it is used. Keeping the selectivity of an
index up to date is important for the optimizerÕs choices in seeking the most optimal query plan.

Index statistics in Firebird are not automatically recalculated in response to large batches of
inserts, updates or deletions. It may be beneficial to recalculate the selectivity of an index after such
operations because the selectivity tends to become outdated.

Chapter 5. Data Definition (DDL) Statements

133

! The statements CREATE INDEX and ALTER INDEX ACTIVE both store index statistics that
completely correspond to the contents of the newly-[re]built index.

The selectivity of an index can be recalculated by the owner of the table or an administrator . It can
be performed under concurrent load without risk of corruption. However, be aware that, under
concurrent load, the newly calculated statistics could become outdated as soon as SET STATISTICS
finishes.

Example Using SET STATISTICS

Recalculating the selectivity of the index IDX_UPDATER

SET STATISTICS INDEX IDX_UPDATER;

See also

CREATE INDEX, ALTER INDEX

5.6. VIEW
A view is a virtual table that is actually a stored and named SELECT query for retrieving data of any
complexity. Data can be retrieved from one or more tables, from other views and also from
selectable stored procedures.

Unlike regular tables in relational databases, a view is not an independent data set stored in the
database. The result is dynamically created as a data set when the view is selected.

The metadata of a view are available to the process that generates the binary code for stored
procedures and triggers, just as though they were concrete tables storing persistent data.

5.6.1. CREATE VIEW

Used for

Creating a view

Available in

DSQL

Syntax

CREATE VIEW viewname [<full_column_list>]
Ê AS <select_statement>
Ê [WITH CHECK OPTION]

<full_column_list> ::= (colname [, colname ...])

Table 31. CREATE VIEW Statement Parameters

Chapter 5. Data Definition (DDL) Statements

134

Parameter Description

viewname View name, maximum 31 characters

select_statement SELECT statement

full_column_list The list of columns in the view

colname View column name. Duplicate column names are not allowed.

The CREATE VIEW statement creates a new view. The identifier (name) of a view must be unique
among the names of all views, tables and stored procedures in the database.

The name of the new view can be followed by the list of column names that should be returned to
the caller when the view is invoked. Names in the list do not have to be related to the names of the
columns in the base tables from which they derive.

If the view column list is omitted, the system will use the column names and/or aliases from the
SELECT statement. If duplicate names or non-aliased expression-derived columns make this
impossible to obtain a valid list, creation of the view fails with an error.

The number of columns in the viewÕs list must exactly match the number of columns in the
selection list of the underlying SELECT statement in the view definition.

!

Additional Points

¥ If the full list of columns is specified, it makes no sense to specify aliases in the
SELECT statement because the names in the column list will override them

¥ The column list is optional if all the columns in the SELECT are explicitly named
and are unique in the selection list

Updatable Views

A view can be updatable or read-only. If a view is updatable, the data retrieved when this view is
called can be changed by the DML statements INSERT, UPDATE, DELETE, UPDATE OR INSERT or MERGE.
Changes made in an updatable view are applied to the underlying table(s).

A read-only view can be made updateable with the use of triggers. Once triggers have been defined
on a view, changes posted to it will never be written automatically to the underlying table, even if
the view was updateable to begin with. It is the responsibility of the programmer to ensure that the
triggers update (or delete from, or insert into) the base tables as needed.

A view will be automatically updatable if all the following conditions are met:

¥ the SELECT statement queries only one table or one updatable view

¥ the SELECT statement does not call any stored procedures

¥ each base table (or base view) column not present in the view definition is covered by one of
the following conditions:

" it is nullable

" it has a non- NULL default value

Chapter 5. Data Definition (DDL) Statements

135

" it has a trigger that supplies a permitted value

¥ the SELECT statement contains no fields derived from subqueries or other expressions

¥ the SELECT statement does not contain fields defined through aggregate functions, such as MIN,
MAX, AVG, SUM, COUNT, LIST

¥ the SELECT statement contains no ORDER BY or GROUP BY clause

¥ the SELECT statement does not include the keyword DISTINCT or row-restrictive keywords such as
ROWS, FIRST, SKIP

WITH CHECK OPTION

The optional WITH CHECK OPTION clause requires an updatable view to check whether new or
updated data meet the condition specified in the WHERE clause of the SELECT statement. Every attempt
to insert a new record or to update an existing one is checked whether the new or updated record
would meet the WHERE criteria. If they fail the check, the operation is not performed and an
appropriate error message is returned.

WITH CHECK OPTION can be specified only in a CREATE VIEW statement in which a WHERE clause is
present to restrict the output of the main SELECT statement. An error message is returned otherwise.

"

Please note:

If WITH CHECK OPTION is used, the engine checks the input against the WHERE clause
before passing anything to the base relation. Therefore, if the check on the input
fails, any default clauses or triggers on the base relation that might have been
designed to correct the input will never come into action.

Furthermore, view fields omitted from the INSERT statement are passed as NULLs to
the base relation, regardless of their presence or absence in the WHERE clause. As a
result, base table defaults defined on such fields will not be applied. Triggers, on
the other hand, will fire and work as expected.

For views that do not have WITH CHECK OPTION, fields omitted from the INSERT
statement are not passed to the base relation at all, so any defaults will be applied.

Ownership of a View

The creator of a view becomes its owner.

To create a view, a non-admin user needs at least SELECT access to the underlying table(s) and/or
view(s), and the EXECUTE privilege on any selectable stored procedures involved.

To enable insertions, updates and deletions through the view, the creator/owner must also possess
the corresponding INSERT, UPDATE and DELETE rights on the base object(s).

Granting other users privileges on the view is only possible if the view owner himself has these
privileges on the underlying objects WITH GRANT OPTION. It will always be the case if the view owner
is also the owner of the underlying objects.

Chapter 5. Data Definition (DDL) Statements

136

Examples of Creating Views

1. Creating view returning the JOB_CODE and JOB_TITLE columns only for those jobs where
MAX_SALARY is less than $15,000.

CREATE VIEW ENTRY_LEVEL_JOBS AS
SELECT JOB_CODE, JOB_TITLE
FROM JOB
WHERE MAX_SALARY < 15000;

2. Creating a view returning the JOB_CODE and JOB_TITLE columns only for those jobs where
MAX_SALARY is less than $15,000. Whenever a new record is inserted or an existing record is
updated, the MAX_SALARY < 15000 condition will be checked. If the condition is not true, the
insert/update operation will be rejected.

CREATE VIEW ENTRY_LEVEL_JOBS AS
SELECT JOB_CODE, JOB_TITLE
FROM JOB
WHERE MAX_SALARY < 15000
WITH CHECK OPTION;

3. Creating a view with an explicit column list.

CREATE VIEW PRICE_WITH_MARKUP (
Ê CODE_PRICE,
Ê COST,
Ê COST_WITH_MARKUP
) AS
SELECT
Ê CODE_PRICE,
Ê COST,
Ê COST * 1.1
FROM PRICE;

4. Creating a view with the help of aliases for fields in the SELECT statement (the same result as in
Example 3).

CREATE VIEW PRICE_WITH_MARKUP AS
SELECT
Ê CODE_PRICE,
Ê COST,
Ê COST * 1.1 AS COST_WITH_MARKUP
FROM PRICE;

5. Creating a read-only view based on two tables and a stored procedure.

Chapter 5. Data Definition (DDL) Statements

137

CREATE VIEW GOODS_PRICE AS
SELECT
Ê goods.name AS goodsname,
Ê price.cost AS cost,
Ê b.quantity AS quantity
FROM
Ê goods
Ê JOIN price ON goods.code_goods = price.code_goods
Ê LEFT JOIN sp_get_balance(goods.code_goods) b ON 1 = 1;

See also

ALTER VIEW, CREATE OR ALTER VIEW, RECREATE VIEW, DROP VIEW

5.6.2. ALTER VIEW

Used for

Modifying an existing view

Available in

DSQL

Syntax

ALTER VIEW viewname [<full_column_list>]
Ê AS <select_statement>
Ê [WITH CHECK OPTION]

<full_column_list> ::= (colname [, colname ...])

Table 32. ALTER VIEW Statement Parameters

Parameter Description

viewname Name of an existing view

select_statement SELECT statement

full_column_list The list of columns in the view

colname View column name. Duplicate column names are not allowed.

Use the ALTER VIEW statement for changing the definition of an existing view. Privileges for views
remain intact and dependencies are not affected.

The syntax of the ALTER VIEW statement corresponds completely with that of CREATE VIEW.

#
Be careful when you change the number of columns in a view. Existing application
code and PSQL modules that access the view may become invalid. For information
on how to detect this kind of problem in stored procedures and trigger, see The
RDB$VALID_BLR Field in the Appendix.

Chapter 5. Data Definition (DDL) Statements

138

Only the view owner and administrators have the authority to use ALTER VIEW.

Example using ALTER VIEW

Altering the view PRICE_WITH_MARKUP

ALTER VIEW PRICE_WITH_MARKUP (
Ê CODE_PRICE,
Ê COST,
Ê COST_WITH_MARKUP
) AS
SELECT
Ê CODE_PRICE,
Ê COST,
Ê COST * 1.15
FROM PRICE;

See also

CREATE VIEW, CREATE OR ALTER VIEW, RECREATE VIEW

5.6.3. CREATE OR ALTER VIEW

Used for

Creating a new view or altering an existing view.

Available in

DSQL

Syntax

CREATE OR ALTER VIEW viewname [<full_column_list>]
Ê AS <select_statement>
Ê [WITH CHECK OPTION]

<full_column_list> ::= (colname [, colname ...])

Table 33. CREATE OR ALTER VIEW Statement Parameters

Parameter Description

viewname Name of a view which may or may not exist

select_statement SELECT statement

full_column_list The list of columns in the view

colname View column name. Duplicate column names are not allowed.

Use the CREATE OR ALTER VIEW statement for changing the definition of an existing view or creating it
if it does not exist. Privileges for an existing view remain intact and dependencies are not affected.

The syntax of the CREATE OR ALTER VIEW statement corresponds completely with that of CREATE VIEW.

Chapter 5. Data Definition (DDL) Statements

139

Example

Creating the new view PRICE_WITH_MARKUP view or altering it if it already exists:

CREATE OR ALTER VIEW PRICE_WITH_MARKUP (
Ê CODE_PRICE,
Ê COST,
Ê COST_WITH_MARKUP
) AS
SELECT
Ê CODE_PRICE,
Ê COST,
Ê COST * 1.15
FROM PRICE;

See also

CREATE VIEW, ALTER VIEW, RECREATE VIEW

5.6.4. DROP VIEW

Used for

Deleting (dropping) a view

Available in

DSQL

Syntax

DROP VIEW viewname

Table 34. DROP VIEW Statement Parameter

Parameter Description

viewname View name

The DROP VIEW statement deletes an existing view. The statement will fail if the view has
dependencies.

Only the view owner and administrators have the authority to use DROP VIEW.

Example

Deleting the PRICE_WITH_MARKUP view.

DROP VIEW PRICE_WITH_MARKUP;

See also

CREATE VIEW, RECREATE VIEW, CREATE OR ALTER VIEW

Chapter 5. Data Definition (DDL) Statements

140

5.6.5. RECREATE VIEW

Used for

Creating a new view or recreating an existing view

Available in

DSQL

Syntax

RECREATE VIEW viewname [<full_column_list>]
Ê AS <select_statement>
Ê [WITH CHECK OPTION]

<full_column_list> ::= (colname [, colname ...])

Table 35. RECREATE VIEW Statement Parameters

Parameter Description

viewname View name, maximum 31 characters

select_statement SELECT statement

full_column_list The list of columns in the view

colname View column name. Duplicate column names are not allowed.

Creates or recreates a view. If there is a view with this name already, the engine will try to drop it
before creating the new instance. If the existing view cannot be dropped, because of dependencies
or insufficient rights, for example, RECREATE VIEW fails with an error.

Example

Creating the new view PRICE_WITH_MARKUP view or recreating it, if it already exists.

RECREATE VIEW PRICE_WITH_MARKUP (
Ê CODE_PRICE,
Ê COST,
Ê COST_WITH_MARKUP
) AS
SELECT
Ê CODE_PRICE,
Ê COST,
Ê COST * 1.15
FROM PRICE;

See also

CREATE VIEW, DROP VIEW, CREATE OR ALTER VIEW

Chapter 5. Data Definition (DDL) Statements

141

5.7. TRIGGER
A trigger is a special type of stored procedure that is not called directly, instead being executed
when a specified event occurs in the associated table or view. A trigger is specific to one and only
one relation (table or view) and one phase in the timing of the event (BEFORE or AFTER). It can be
specified to execute for one specific event (insert, update, delete) or for some combination of two or
three of those events.

Another form of trigger!Ñ!known as a Òdatabase triggerÓ!Ñ!can be specified to fire in association
with the start or end of a user session (connection) or a user transaction.

5.7.1. CREATE TRIGGER

Used for

Creating a new trigger

Available in

DSQL, ESQL

Chapter 5. Data Definition (DDL) Statements

142

Syntax

CREATE TRIGGER trigname
Ê { <relation_trigger_legacy>
Ê | <relation_trigger_sql2003>
Ê | <database_trigger> }
AS
Ê [<declarations>]
BEGIN
Ê [<PSQL_statements>]
END

<relation_trigger_legacy> ::=
Ê FOR {tablename | viewname}
Ê [ACTIVE | INACTIVE]
Ê {BEFORE | AFTER} <mutation_list>
Ê [POSITION number]

<relation_trigger_sql2003> ::=
Ê [ACTIVE | INACTIVE]
Ê {BEFORE | AFTER} <mutation_list>
Ê [POSITION number]
Ê ON {tablename | viewname}

<database_trigger> ::=
Ê [ACTIVE | INACTIVE] ON <db_event> [POSITION number]

<mutation_list> ::=
Ê <mutation> [OR <mutation> [OR <mutation>]]

<mutation> ::= { INSERT | UPDATE | DELETE }

<db_event> ::=
Ê { CONNECT
Ê | DISCONNECT
Ê | TRANSACTION START
Ê | TRANSACTION COMMIT
Ê | TRANSACTION ROLLBACK }

<declarations> ::= {<declare_var> | <declare_cursor>};
Ê [{<declare_var> | <declare_cursor>}; É]

Table 36. CREATE TRIGGER Statement Parameters

Parameter Description

trigname Trigger name consisting of up to 31 characters. It must be unique among
all trigger names in the database.

relation_trigger_legacy Legacy style of trigger declaration for a relation trigger

Chapter 5. Data Definition (DDL) Statements

143

Parameter Description

relation_trigger_sql200
3

Relation trigger declaration compliant with the SQL:2003 standard

database_trigger Database trigger declaration

tablename Name of the table with which the relation trigger is associated

viewname Name of the view with which the relation trigger is associated

mutation_list List of relation (table | view) events

number Position of the trigger in the firing order. From 0 to 32,767

db_event Connection or transaction event

declarations Section for declaring local variables and named cursors

declare_var Local variable declaration

declare_cursor Named cursor declaration

PSQL_statements Statements in FirebirdÕs programming language (PSQL)

The CREATE TRIGGER statement is used for creating a new trigger. A trigger can be created either for a
relation (table | view) event (or a combination of events), or for a database event .

CREATE TRIGGER, along with its associates ALTER TRIGGER, CREATE OR ALTER TRIGGER and RECREATE
TRIGGER, is a compound statement , consisting of a header and a body. The header specifies the name
of the trigger, the name of the relation (for a relation trigger), the phase of the trigger and the
event[s] it applies to. The body consists of optional declarations of local variables and named
cursors followed by one or more statements, or blocks of statements, all enclosed in an outer block
that begins with the keyword BEGIN and ends with the keyword END. Declarations and embedded
statements are terminated with semi-colons (Ô ; Õ).

The name of the trigger must be unique among all trigger names.

Statement Terminators

Some SQL statement editors!Ñ!specifically the isql utility that comes with Firebird and possibly
some third-party editors!Ñ!employ an internal convention that requires all statements to be
terminated with a semi-colon. This creates a conflict with PSQL syntax when coding in these
environments. If you are unacquainted with this problem and its solution, please study the details
in the PSQL chapter in the section entitled Switching the Terminator in isql .

Relation Triggers (on Tables or Views)

Relation triggers are executed at the row (record) level every time the row image changes. A trigger
can be either ACTIVE or INACTIVE. Only active triggers are executed. Triggers are created ACTIVE by
default.

Forms of Declaration

Firebird supports two forms of declaration for relation triggers:

Chapter 5. Data Definition (DDL) Statements

144

¥ The original, legacy syntax

¥ The SQL:2003 standard-compliant form (recommended)

The SQL:2003 standard-compliant form is the recommended one.

A relation trigger specifies!Ñ!among other things!Ñ!a phase and one or more events.

Phase

Phase concerns the timing of the trigger with regard to the change-of-state event in the row of data:

¥ A BEFORE trigger is fired before the specified database operation (insert, update or delete) is
carried out

¥ An AFTER trigger is fired after the database operation has been completed

Row Events

A relation trigger definition specifies at least one of the DML operations INSERT, UPDATE and DELETE,
to indicate one or more events on which the trigger should fire. If multiple operations are specified,
they must be separated by the keyword OR. No operation may occur more than once.

Within the statement block, the Boolean context variables INSERTING, UPDATING and DELETING can be
used to test which operation is currently executing.

Firing Order of Triggers

The keyword POSITION allows an optional execution order (Òfiring orderÓ) to be specified for a series
of triggers that have the same phase and event as their target. The default position is 0. If no
positions are specified, or if several triggers have a single position number, the triggers will be
executed in the alphabetical order of their names.

Variable Declarations

The optional declarations section beneath the keyword AS in the header of the trigger is for defining
variables and named cursors that are local to the trigger. For more details, see DECLARE VARIABLE and
DECLARE CURSOR in the Procedural SQL chapter.

The Trigger Body

The local declarations (if any) are the final part of a triggerÕs header section. The trigger body
follows, where one or more blocks of PSQL statements are enclosed in a structure that starts with
the keyword BEGIN and terminates with the keyword END.

Only the owner of the view or table and administrators have the authority to use CREATE TRIGGER.

Examples of CREATE TRIGGER for Tables and Views

1. Creating a trigger in the ÒlegacyÓ form, firing before the event of inserting a new record into the
CUSTOMER table occurs.

Chapter 5. Data Definition (DDL) Statements

145

CREATE TRIGGER SET_CUST_NO FOR CUSTOMER
ACTIVE BEFORE INSERT POSITION 0
AS
BEGIN
Ê IF (NEW.CUST_NO IS NULL) THEN
Ê NEW.CUST_NO = GEN_ID(CUST_NO_GEN, 1);
END

2. Creating a trigger firing before the event of inserting a new record into the CUSTOMER table in the
SQL:2003 standard-compliant form.

CREATE TRIGGER set_cust_no
ACTIVE BEFORE INSERT POSITION 0 ON customer
AS
BEGIN
Ê IF (NEW.cust_no IS NULL) THEN
Ê NEW.cust_no = GEN_ID(cust_no_gen, 1);
END

3. Creating a trigger that will file after either inserting, updating or deleting a record in the
CUSTOMER table.

CREATE TRIGGER TR_CUST_LOG
ACTIVE AFTER INSERT OR UPDATE OR DELETE POSITION 10
ON CUSTOMER
AS
BEGIN
Ê INSERT INTO CHANGE_LOG (LOG_ID,
Ê ID_TABLE,
Ê TABLE_NAME,
Ê MUTATION)
Ê VALUES (NEXT VALUE FOR SEQ_CHANGE_LOG,
Ê OLD.CUST_NO,
Ê 'CUSTOMER',
Ê CASE
Ê WHEN INSERTING THEN 'INSERT'
Ê WHEN UPDATING THEN 'UPDATE'
Ê WHEN DELETING THEN 'DELETE'
Ê END);
END

Database Triggers

Triggers can be defined to fire upon Òdatabase eventsÓ, which really refers to a mixture of events
that act across the scope of a session (connection) and events that act across the scope of an
individual transaction:

Chapter 5. Data Definition (DDL) Statements

146

¥ CONNECT

¥ DISCONNECT

¥ TRANSACTION START

¥ TRANSACTION COMMIT

¥ TRANSACTION ROLLBACK

Execution of Database Triggers and Exception Handling

CONNECT and DISCONNECT triggers are executed in a transaction created specifically for this purpose. If
all goes well, the transaction is committed. Uncaught exceptions cause the transaction to roll back,
and

¥ for a CONNECT trigger, the connection is then broken and the exception is returned to the client

¥ for a DISCONNECT trigger, exceptions are not reported. The connection is broken as intended

TRANSACTION triggers are executed within the transaction whose start, commit or rollback evokes
them. The action taken after an uncaught exception depends on the event:

¥ In a TRANSACTION START trigger, the exception is reported to the client and the transaction is
rolled back

¥ In a TRANSACTION COMMIT trigger, the exception is reported, the triggerÕs actions so far are undone
and the commit is cancelled

¥ In a TRANSACTION ROLLBACK trigger, the exception is not reported and the transaction is rolled
back as intended.

Traps

Obviously there is no direct way of knowing if a DISCONNECT or TRANSACTION ROLLBACK trigger caused
an exception. It also follows that the connection to the database cannot happen if a CONNECT trigger
causes an exception and a transaction cannot start if a TRANSACTION START trigger causes one, either.
Both phenomena effectively lock you out of your database until you get in there with database
triggers suppressed and fix the bad code.

Trigger Suppression

Some Firebird command-line tools have been supplied with switches that an administrator can use
to suppress the automatic firing of database triggers. So far, they are:

gbak -nodbtriggers
isql -nodbtriggers
nbackup -T

Two-phase Commit

In a two-phase commit scenario, TRANSACTION COMMIT triggers fire in the prepare phase, not at the
commit.

Chapter 5. Data Definition (DDL) Statements

147

Some Caveats

1. The use of the IN AUTONOMOUS TRANSACTION DO statement in the database event triggers related to
transactions (TRANSACTION START, TRANSACTION ROLLBACK, TRANSACTION COMMIT) may cause the
autonomous transaction to enter an infinite loop

2. The DISCONNECT and TRANSACTION ROLLBACK event triggers will not be executed when clients are
disconnected via monitoring tables (DELETE FROM MON$ATTACHMENTS)

Only the database owner and administrators have the authority to create database triggers.

Examples of CREATE TRIGGER for ÒDatabase TriggersÓ

1. Creating a trigger for the event of connecting to the database that logs users logging into the
system. The trigger is created as inactive.

CREATE TRIGGER tr_log_connect
INACTIVE ON CONNECT POSITION 0
AS
BEGIN
Ê INSERT INTO LOG_CONNECT (ID,
Ê USERNAME,
Ê ATIME)
Ê VALUES (NEXT VALUE FOR SEQ_LOG_CONNECT,
Ê CURRENT_USER,
Ê CURRENT_TIMESTAMP);
END

2. Creating a trigger for the event of connecting to the database that does not permit any users,
except for SYSDBA, to log in during off hours.

CREATE EXCEPTION E_INCORRECT_WORKTIME 'The working day has not started yet.';

CREATE TRIGGER TR_LIMIT_WORKTIME ACTIVE
ON CONNECT POSITION 1
AS
BEGIN
Ê IF ((CURRENT_USER <> 'SYSDBA') AND
Ê NOT (CURRENT_TIME BETWEEN time '9:00' AND time '17:00')) THEN
Ê EXCEPTION E_INCORRECT_WORKTIME;
END

See also

ALTER TRIGGER, CREATE OR ALTER TRIGGER, RECREATE TRIGGER, DROP TRIGGER

5.7.2. ALTER TRIGGER

Used for

Chapter 5. Data Definition (DDL) Statements

148

Modifying and deactivating an existing trigger

Available in

DSQL, ESQL

Syntax

ALTER TRIGGER trigname
Ê [ACTIVE | INACTIVE]
Ê [{BEFORE | AFTER} <mutation_list> | ON <db_event>]
Ê [POSITION number]
Ê [
Ê AS
Ê [<declarations>]
Ê BEGIN
Ê [<PSQL_statements>]
Ê END
Ê]

<mutation_list> ::=
Ê <mutation> [OR <mutation> [OR <mutation>]]

<mutation> ::= { INSERT | UPDATE | DELETE }

<db_event> ::=
Ê { CONNECT
Ê | DISCONNECT
Ê | TRANSACTION START
Ê | TRANSACTION COMMIT
Ê | TRANSACTION ROLLBACK }

<declarations> ::= {<declare_var> | <declare_cursor>};
Ê [{<declare_var> | <declare_cursor>}; É]

Table 37. ALTER TRIGGER Statement Parameters

Parameter Description

trigname Name of an existing trigger

mutation_list List of relation (table | view) events

number Position of the trigger in the firing order. From 0 to 32,767

declarations Section for declaring local variables and named cursors

declare_var Local variable declaration

declare_cursor Named cursor declaration

PSQL_statements Statements in FirebirdÕs programming language (PSQL)

The ALTER TRIGGER statement allows certain changes to the header and body of a trigger.

Chapter 5. Data Definition (DDL) Statements

149

Permitted Changes to Triggers

¥ Status (ACTIVE | INACTIVE)

¥ Phase (BEFORE | AFTER)

¥ Events; but relation trigger events cannot be changed to database trigger events, nor vice versa

¥ Position in the firing order

¥ Modifications to code in the trigger body

If some element was not specified, it remains unchanged.

!

Reminders

The BEFORE keyword directs that the trigger be executed before the associated
event occurs; the AFTER keyword directs that it be executed after the event.

More than one relation event!Ñ! INSERT, UPDATE, DELETE!Ñ!can be covered in a single
trigger. The events should be separated with the keyword OR. No event should be
mentioned more than once.

The keyword POSITION allows an optional execution order (Òfiring orderÓ) to be
specified for a series of triggers that have the same phase and event as their target.
The default position is 0. If no positions are specified, or if several triggers have a
single position number, the triggers will be executed in the alphabetical order of
their names.

Administrators and the following users have the authority to use ALTER TRIGGER:

¥ For relation triggers, the owner of the table

¥ For database triggers, the owner of the database

Examples using ALTER TRIGGER

1. Deactivating the set_cust_no trigger (switching it to the inactive status).

ALTER TRIGGER set_cust_no INACTIVE;

2. Changing the firing order position of the set_cust_no trigger.

ALTER TRIGGER set_cust_no POSITION 14;

3. Switching the TR_CUST_LOG trigger to the inactive status and modifying the list of events.

ALTER TRIGGER TR_CUST_LOG
INACTIVE AFTER INSERT OR UPDATE;

4. Switching the tr_log_connect trigger to the active status, changing its position and body.

Chapter 5. Data Definition (DDL) Statements

150

ALTER TRIGGER tr_log_connect
ACTIVE POSITION 1
AS
BEGIN
Ê INSERT INTO LOG_CONNECT (ID,
Ê USERNAME,
Ê ROLENAME,
Ê ATIME)
Ê VALUES (NEXT VALUE FOR SEQ_LOG_CONNECT,
Ê CURRENT_USER,
Ê CURRENT_ROLE,
Ê CURRENT_TIMESTAMP);
END

See also

CREATE TRIGGER, CREATE OR ALTER TRIGGER, RECREATE TRIGGER, DROP TRIGGER

5.7.3. CREATE OR ALTER TRIGGER

Used for

Creating a new trigger or altering an existing trigger

Available in

DSQL

Syntax

CREATE OR ALTER TRIGGER trigname {
Ê <relation_trigger_legacy> |
Ê <relation_trigger_sql2003> |
Ê <database_trigger> }
AS
Ê [<declarations>]
BEGIN
Ê [<PSQL_statements>]
END

For the full detail of the syntax, see CREATE TRIGGER.

The CREATE OR ALTER TRIGGER statement creates a new trigger if it does not exist; otherwise it alters
and recompiles it with the privileges intact and dependencies unaffected.

Example using CREATE OR ALTER TRIGGER

Creating a new trigger if it does not exist or altering it if it does exist.

Chapter 5. Data Definition (DDL) Statements

151

CREATE OR ALTER TRIGGER set_cust_no
ACTIVE BEFORE INSERT POSITION 0 ON customer
AS
BEGIN
Ê IF (NEW.cust_no IS NULL) THEN
Ê NEW.cust_no = GEN_ID(cust_no_gen, 1);
END

See also

CREATE TRIGGER, ALTER TRIGGER, RECREATE TRIGGER

5.7.4. DROP TRIGGER

Used for

Deleting an existing trigger

Available in

DSQL, ESQL

Syntax

DROP TRIGGER trigname

Table 38. DROP TRIGGER Statement Parameter

Parameter Description

trigname Trigger name

The DROP TRIGGER statement deletes an existing trigger.

Administrators and the following users have the authority to use DROP TRIGGER:

¥ For relation triggers, the owner of the table

¥ For database triggers, the owner of the database

Example using DROP TRIGGER

Deleting the set_cust_no trigger.

DROP TRIGGER set_cust_no;

See also

CREATE TRIGGER, RECREATE TRIGGER

5.7.5. RECREATE TRIGGER

Used for

Chapter 5. Data Definition (DDL) Statements

152

Creating a new trigger or recreating an existing trigger

Available in

DSQL

Syntax

RECREATE TRIGGER trigname {
Ê <relation_trigger_legacy> |
Ê <relation_trigger_sql2003> |
Ê <database_trigger> }
AS
Ê [<declarations>]
BEGIN
Ê [<PSQL_statements>]
END

For the full detail of the syntax, see CREATE TRIGGER.

The RECREATE TRIGGER statement creates a new trigger if no trigger with the specified name exists;
otherwise the RECREATE TRIGGER statement tries to delete the existing trigger and create a new one.
The operation will fail on COMMIT if the trigger is in use.

$ Be aware that dependency errors are not detected until the COMMIT phase of this
operation.

Example using RECREATE TRIGGER

Creating or recreating the set_cust_no trigger.

RECREATE TRIGGER set_cust_no
ACTIVE BEFORE INSERT POSITION 0 ON customer
AS
BEGIN
Ê IF (NEW.cust_no IS NULL) THEN
Ê NEW.cust_no = GEN_ID(cust_no_gen, 1);
END

See also

CREATE TRIGGER, DROP TRIGGER, CREATE OR ALTER TRIGGER

5.8. PROCEDURE
A stored procedure is a software module that can be called from a client, another procedure, an
executable block or a trigger. Stored procedures, executable blocks and triggers are written in
procedural SQL (PSQL). Most SQL statements are available in PSQL as well, sometimes with
limitations or extensions. Among notable exceptions are DDL and transaction control statements.

Chapter 5. Data Definition (DDL) Statements

153

Stored procedures can have many input and output parameters.

5.8.1. CREATE PROCEDURE

Used for

Creating a new stored procedure

Available in

DSQL, ESQL

Syntax

CREATE PROCEDURE procname
Ê [(<inparam> [, <inparam> ...])]
Ê [RETURNS (<outparam> [, <outparam> ...])]
AS
Ê [<declarations>]
BEGIN
Ê [<PSQL_statements>]
END

<inparam> ::= <param_decl> [{= | DEFAULT} <value>]

<outparam> ::= <param_decl>

<value> ::= {<literal> | NULL | <context_var>}

<param_decl> ::= paramname <type> [NOT NULL]
Ê [COLLATE collation]

<type> ::=
Ê <datatype>
Ê | [TYPE OF] domain
Ê | TYPE OF COLUMN rel . col

<datatype> ::=
Ê {SMALLINT | INT[EGER] | BIGINT}
Ê | {FLOAT | DOUBLE PRECISION}
Ê | {DATE | TIME | TIMESTAMP}
Ê | {DECIMAL | NUMERIC} [(precision [, scale])]
Ê | {CHAR | CHARACTER} [VARYING] | VARCHAR} [(size)]
Ê [CHARACTER SET charset]
Ê | {NCHAR | NATIONAL {CHARACTER | CHAR}} [VARYING]
Ê [(size)]
Ê | BLOB [SUB_TYPE {subtype_num | subtype_name}]
Ê [SEGMENT SIZE seglen] [CHARACTER SET charset]
Ê | BLOB [(seglen [, subtype_num])]

<declarations> ::= {<declare_var> | <declare_cursor>};
Ê [{<declare_var> | <declare_cursor>}; É]

Chapter 5. Data Definition (DDL) Statements

154

Table 39. CREATE PROCEDURE Statement Parameters

Parameter Description

procname Stored procedure name consisting of up to 31 characters. Must be unique
among all table, view and procedure names in the database

inparam Input parameter description

outparam Output parameter description

declarations Section for declaring local variables and named cursors

declare_var Local variable declaration

declare_cursor Named cursor declaration

PSQL_statements Procedural SQL statements

literal A literal value that is assignment-compatible with the data type of the
parameter

context_var Any context variable whose type is compatible with the data type of the
parameter

paramname The name of an input or output parameter of the procedure. It may
consist of up to 31 characters. The name of the parameter must be unique
among input and output parameters of the procedure and its local
variables

datatype SQL data type

collation Collation sequence

domain Domain name

rel Table or view name

col Table or view column name

precision The total number of significant digits that the parameter should be able
to hold (1..18)

scale The number of digits after the decimal point (0.. precision)

size The maximum size of a string type parameter or variable, in characters

charset Character set of a string type parameter or variable

subtype_num BLOB subtype number

subtype_name BLOB subtype mnemonic name

seglen Segment size (max. 65535)

The CREATE PROCEDURE statement creates a new stored procedure. The name of the procedure must
be unique among the names of all stored procedures, tables and views in the database.

CREATE PROCEDURE is a compound statement , consisting of a header and a body. The header specifies
the name of the procedure and declares input parameters and the output parameters, if any, that
are to be returned by the procedure.

Chapter 5. Data Definition (DDL) Statements

155

The procedure body consists of declarations for any local variables and named cursors that will be
used by the procedure, followed by one or more statements, or blocks of statements, all enclosed in
an outer block that begins with the keyword BEGIN and ends with the keyword END. Declarations and
embedded statements are terminated with semi-colons (Ô ; Õ).

Statement Terminators

Some SQL statement editors!Ñ!specifically the isql utility that comes with Firebird and possibly
some third-party editors!Ñ!employ an internal convention that requires all statements to be
terminated with a semi-colon. This creates a conflict with PSQL syntax when coding in these
environments. If you are unacquainted with this problem and its solution, please study the details
in the PSQL chapter in the section entitled Switching the Terminator in isql .

Parameters

Each parameter has a data type specified for it. The NOT NULL constraint can also be specified for any
parameter, to prevent NULL being passed or assigned to it.

A collation sequence can be specified for string-type parameters, using the COLLATE clause.

Input Parameters

Input parameters are presented as a parenthesized list following the name of the procedure.
They are passed into the procedure as values, so anything that changes them inside the
procedure has no effect on the parameters in the calling program. Input parameters may have
default values. Those that do have values specified for them must be located at the end of the list
of parameters.

Output Parameters

The optional RETURNS clause is for specifying a parenthesised list of output parameters for the
stored procedure.

Use of Domains in Declarations

A domain name can be specified as the type of a parameter. The parameter will inherit all domain
attributes. If a default value is specified for the parameter, it overrides the default value specified
in the domain definition.

If the TYPE OF clause is added before the domain name, only the data type of the domain is used:
any of the other attributes of the domain!Ñ! NOT NULL constraint, CHECK constraints, default
value!Ñ!are neither checked nor used. However, if the domain is of a text type, its character set and
collation sequence are always used.

Use of Column Type in Declarations

Input and output parameters can also be declared using the data type of columns in existing tables
and views. The TYPE OF COLUMN clause is used for that, specifying relationname .columnname as its
argument.

When TYPE OF COLUMN is used, the parameter inherits only the data type and!Ñ!for string types!Ñ!the
character set and collation sequence. The constraints and default value of the column are ignored.

Chapter 5. Data Definition (DDL) Statements

156

$
Bug warning for pre-Firebird 3 versions:

For input parameters, the collation that comes with the columnÕs type is ignored in
comparisons (e.g. equality tests). For local variables, the behaviour varies.

The bug was fixed for Firebird 3.

Variable and Cursor Declarations

The optional declarations section, located last in the header section of the procedure definition,
defines variables local to the procedure and its named cursors. Local variable declarations follow
the same rules as parameters regarding specification of the data type. See details in the PSQL
chapter for DECLARE VARIABLE and DECLARE CURSOR.

Procedure Body

The header section is followed by the procedure body, consisting of one or more PSQL statements
enclosed between the outer keywords BEGIN and END. Multiple BEGIN É END blocks of terminated
statements may be embedded inside the procedure body.

Any user connected to the database can create a new stored procedure. The user who creates a
stored procedure becomes its owner.

Examples

Creating a stored procedure that inserts a record into the BREED table and returns the code of the
inserted record:

CREATE PROCEDURE ADD_BREED (
Ê NAME D_BREEDNAME, /* Domain attributes are inherited */
Ê NAME_EN TYPE OF D_BREEDNAME, /* Only the domain type is inherited */
Ê SHORTNAME TYPE OF COLUMN BREED.SHORTNAME,
Ê /* The table column type is inherited */
Ê REMARK VARCHAR(120) CHARACTER SET WIN1251 COLLATE PXW_CYRL,
Ê CODE_ANIMAL INT NOT NULL DEFAULT 1
)
RETURNS (
Ê CODE_BREED INT
)
AS
BEGIN
Ê INSERT INTO BREED (
Ê CODE_ANIMAL, NAME, NAME_EN, SHORTNAME, REMARK)
Ê VALUES (
Ê :CODE_ANIMAL, :NAME, :NAME_EN, :SHORTNAME, :REMARK)
Ê RETURNING CODE_BREED INTO CODE_BREED;
END

Creating a selectable stored procedure that generates data for mailing labels (from employee.fdb):

Chapter 5. Data Definition (DDL) Statements

157

CREATE PROCEDURE mail_label (cust_no INTEGER)
RETURNS (line1 CHAR(40), line2 CHAR(40), line3 CHAR(40),
Ê line4 CHAR(40), line5 CHAR(40), line6 CHAR(40))
AS
Ê DECLARE VARIABLE customer VARCHAR(25);
Ê DECLARE VARIABLE first_name VARCHAR(15);
Ê DECLARE VARIABLE last_name VARCHAR(20);
Ê DECLARE VARIABLE addr1 VARCHAR(30);
Ê DECLARE VARIABLE addr2 VARCHAR(30);
Ê DECLARE VARIABLE city VARCHAR(25);
Ê DECLARE VARIABLE state VARCHAR(15);
Ê DECLARE VARIABLE country VARCHAR(15);
Ê DECLARE VARIABLE postcode VARCHAR(12);
Ê DECLARE VARIABLE cnt INTEGER;
BEGIN
Ê line1 = '';
Ê line2 = '';
Ê line3 = '';
Ê line4 = '';
Ê line5 = '';
Ê line6 = '';

Ê SELECT customer, contact_first, contact_last, address_line1,
Ê address_line2, city, state_province, country, postal_code
Ê FROM CUSTOMER
Ê WHERE cust_no = :cust_no
Ê INTO :customer, :first_name, :last_name, :addr1, :addr2,
Ê :city, :state, :country, :postcode;

Ê IF (customer IS NOT NULL) THEN
Ê line1 = customer;
Ê IF (first_name IS NOT NULL) THEN
Ê line2 = first_name || ' ' || last_name;
Ê ELSE
Ê line2 = last_name;
Ê IF (addr1 IS NOT NULL) THEN
Ê line3 = addr1;
Ê IF (addr2 IS NOT NULL) THEN
Ê line4 = addr2;

Ê IF (country = 'USA') THEN
Ê BEGIN
Ê IF (city IS NOT NULL) THEN
Ê line5 = city || ', ' || state || ' ' || postcode;
Ê ELSE
Ê line5 = state || ' ' || postcode;
Ê END
Ê ELSE
Ê BEGIN
Ê IF (city IS NOT NULL) THEN
Ê line5 = city || ', ' || state;

Chapter 5. Data Definition (DDL) Statements

158

Ê ELSE
Ê line5 = state;
Ê line6 = country || ' ' || postcode;
Ê END

Ê SUSPEND; -- the statement that sends an output row to the buffer
Ê -- and makes the procedure "selectable"
END

See also

CREATE OR ALTER PROCEDURE, ALTER PROCEDURE, RECREATE PROCEDURE, DROP PROCEDURE

5.8.2. ALTER PROCEDURE

Used for

Modifying an existing stored procedure

Available in

DSQL, ESQL

Chapter 5. Data Definition (DDL) Statements

159

Syntax

ALTER PROCEDURE procname
Ê [(<inparam> [, <inparam> ...])]
Ê [RETURNS (<outparam> [, <outparam> ...])]
AS
Ê [<declarations>]
BEGIN
Ê [<PSQL_statements>]
END

<inparam> ::= <param_decl> [{= | DEFAULT} <value>]

<outparam> ::= <param_decl>

<param_decl> ::= paramname <type> [NOT NULL]
Ê [COLLATE collation]

<type> ::=
Ê <datatype>
Ê | [TYPE OF] domain
Ê | TYPE OF COLUMN rel . col

<datatype> ::=
Ê {SMALLINT | INT[EGER] | BIGINT}
Ê | {FLOAT | DOUBLE PRECISSION}
Ê | {DATE | TIME | TIMESTAMP}
Ê | {DECIMAL | NUMERIC} [(precision [, scale])]
Ê | {CHAR | CHARACTER} [VARYING] | VARCHAR} [(size)]
Ê [CHARACTER SET charset]
Ê | {NCHAR | NATIONAL {CHARACTER | CHAR} [VARYING]
Ê [(size)]
Ê | BLOB [SUB_TYPE {subtype_num | subtype_name}]
Ê [SEGMENT SIZE seglen] [CHARACTER SET charset]
Ê | BLOB [(seglen [, subtype_num])]

<declarations> ::= {<declare_var> | <declare_cursor>};
Ê [{<declare_var> | <declare_cursor>}; É]

Table 40. ALTER PROCEDURE Statement Parameters

Parameter Description

procname Name of an existing stored procedure

inparam Input parameter description

outparam Output parameter description

declarations Section for declaring local variables and named cursors

declare_var Local variable declaration

declare_cursor Named cursor declaration

Chapter 5. Data Definition (DDL) Statements

160

Parameter Description

PSQL_statements Procedural SQL statements

literal A literal value that is assignment-compatible with the data type of the
parameter

context_var Any context variable whose type is compatible with the data type of the
parameter

paramname The name of an input or output parameter of the procedure. It may
consist of up to 31 characters. The name of the parameter must be unique
among input and output parameters of the procedure and its local
variables

datatype SQL data type

collation Collation sequence

domain Domain name

rel Table or view name

col Table or view column name

precision The total number of significant digits that the parameter should be able
to hold (1..18)

scale The number of digits after the decimal point (0.. precision)

size The maximum size of a string type parameter or variable, in characters

charset Character set of a string type parameter or variable

subtype_num BLOB subtype number

subtype_name BLOB subtype mnemonic name

seglen Segment size (max. 65535)

The ALTER PROCEDURE statement allows the following changes to a stored procedure definition:

¥ the set and characteristics of input and output parameters

¥ local variables

¥ code in the body of the stored procedure

After ALTER PROCEDURE executes, existing privileges remain intact and dependencies are not affected.

#
Take care about changing the number and type of input and output parameters in
stored procedures. Existing application code and procedures and triggers that call
it could become invalid because the new description of the parameters is
incompatible with the old calling format. For information on how to troubleshoot
such a situation, see the article The RDB$VALID_BLR Field in the Appendix.

The procedure owner and Administrators have the authority to use ALTER PROCEDURE.

ALTER PROCEDURE Example

Chapter 5. Data Definition (DDL) Statements

161

Altering the GET_EMP_PROJ stored procedure.

ALTER PROCEDURE GET_EMP_PROJ (
Ê EMP_NO SMALLINT)
RETURNS (
Ê PROJ_ID VARCHAR(20))
AS
BEGIN
Ê FOR SELECT
Ê PROJ_ID
Ê FROM
Ê EMPLOYEE_PROJECT
Ê WHERE
Ê EMP_NO = :emp_no
Ê INTO :proj_id
Ê DO
Ê SUSPEND;
END

See also

CREATE PROCEDURE, CREATE OR ALTER PROCEDURE, RECREATE PROCEDURE, DROP PROCEDURE

5.8.3. CREATE OR ALTER PROCEDURE

Used for

Creating a new stored procedure or altering an existing one

Available in

DSQL

Syntax

CREATE OR ALTER PROCEDURE procname
Ê [(<inparam> [, <inparam> ...])]
Ê [RETURNS (<outparam> [, <outparam> ...])]
AS
Ê [<declarations>]
BEGIN
Ê [<PSQL_statements>]
END

For the full syntax detail, see CREATE PROCEDURE.

The CREATE OR ALTER PROCEDURE statement creates a new stored procedure or alters an existing one.
If the stored procedure does not exist, it will be created by invoking a CREATE PROCEDURE statement
transparently. If the procedure already exists, it will be altered and compiled without affecting its
existing privileges and dependencies.

Chapter 5. Data Definition (DDL) Statements

162

Example

Creating or altering the GET_EMP_PROJ procedure.

CREATE OR ALTER PROCEDURE GET_EMP_PROJ (
Ê EMP_NO SMALLINT)
RETURNS (
Ê PROJ_ID VARCHAR(20))
AS
BEGIN
Ê FOR SELECT
Ê PROJ_ID
Ê FROM
Ê EMPLOYEE_PROJECT
Ê WHERE
Ê EMP_NO = :emp_no
Ê INTO :proj_id
Ê DO
Ê SUSPEND;
END

See also

CREATE PROCEDURE, ALTER PROCEDURE, RECREATE PROCEDURE

5.8.4. DROP PROCEDURE

Used for

Deleting a stored procedure

Available in

DSQL, ESQL

Syntax

DROP PROCEDURE procname

Table 41. DROP PROCEDURE Statement Parameter

Parameter Description

procname Name of an existing stored procedure

The DROP PROCEDURE statement deletes an existing stored procedure. If the stored procedure has any
dependencies, the attempt to delete it will fail and the appropriate error will be raised.

The procedure owner and Administrators have the authority to use DROP PROCEDURE.

Example

Deleting the GET_EMP_PROJ stored procedure.

Chapter 5. Data Definition (DDL) Statements

163

DROP PROCEDURE GET_EMP_PROJ;

See also

CREATE PROCEDURE, RECREATE PROCEDURE

5.8.5. RECREATE PROCEDURE

Used for

Creating a new stored procedure or recreating an existing one

Available in

DSQL

Syntax

RECREATE PROCEDURE procname
Ê [(<inparam> [, <inparam> ...])]
Ê [RETURNS (<outparam> [, <outparam> ...])]
AS
Ê [<declarations>]
BEGIN
Ê [<PSQL_statements>]
END

For the full syntax detail, see CREATE PROCEDURE.

The RECREATE PROCEDURE statement creates a new stored procedure or recreates an existing one. If
there is a procedure with this name already, the engine will try to delete it and create a new one.
Recreating an existing procedure will fail at the COMMIT request if the procedure has dependencies.

$ Be aware that dependency errors are not detected until the COMMIT phase of this
operation.

After a procedure is successfully recreated, privileges to execute the stored procedure and the
privileges of the stored procedure itself are dropped.

Example

Creating the new GET_EMP_PROJ stored procedure or recreating the existing GET_EMP_PROJ stored
procedure.

Chapter 5. Data Definition (DDL) Statements

164

RECREATE PROCEDURE GET_EMP_PROJ (
Ê EMP_NO SMALLINT)
RETURNS (
Ê PROJ_ID VARCHAR(20))
AS
BEGIN
Ê FOR SELECT
Ê PROJ_ID
Ê FROM
Ê EMPLOYEE_PROJECT
Ê WHERE
Ê EMP_NO = :emp_no
Ê INTO :proj_id
Ê DO
Ê SUSPEND;
END

See also

CREATE PROCEDURE, DROP PROCEDURE, CREATE OR ALTER PROCEDURE

5.9. EXTERNAL FUNCTION

"
REVIEW STATUS

All sections from this point forward to the end of the chapter are awaiting
technical and editorial review.

External functions, also known as Òuser-defined functionsÓ (UDFs) are programs written in an
external programming language and stored in dynamically loaded libraries. Once declared to a
database, they become available in dynamic and procedural statements as though they were
implemented in the SQL language internally.

External functions extend the possibilities for processing data with SQL considerably. To make a
function available to a database, it is declared using the statement DECLARE EXTERNAL FUNCTON.

The library containing a function is loaded when any function included in it is called.

! External functions may be contained in more than one library!Ñ!or ÒmoduleÓ, as it
is referred to in the syntax.

5.9.1. DECLARE EXTERNAL FUNCTION

Used for

Declaring a user-defined function (UDF) to the database

Available in

DSQL, ESQL

Chapter 5. Data Definition (DDL) Statements

165

Syntax

DECLARE EXTERNAL FUNCTION funcname
Ê [<arg_type_decl> [, <arg_type_decl> ...]]
Ê RETURNS {
Ê <sqltype> [BY {DESCRIPTOR | VALUE}] |
Ê CSTRING(length) |
Ê PARAMETER param_num }
Ê [FREE_IT]
Ê ENTRY_POINT 'entry_point ' MODULE_NAME 'library_name '

<arg_type_decl> ::=
Ê <sqltype> [{BY DESCRIPTOR} | NULL]
Ê | CSTRING(length) [NULL]

Table 42. DECLARE EXTERNAL FUNCTION Statement Parameters

Parameter Description

funcname Function name in the database. It may consist of up to 31 characters. It
should be unique among all internal and external function names in the
database and need not be the same name as the name exported from the
UDF library via ENTRY_POINT.

entry_point The exported name of the function

library_name The name of the module (MODULE_NAME from which the function is
exported). This will be the name of the file, without the Ò.dllÓ or Ò.soÓ file
extension.

sqltype SQL data type. It cannot be an array or an array element

length The maximum length of a null-terminated string, specified in bytes

param_num The number of the input parameter, numbered from 1 in the list of input
parameters in the declaration, describing the data type that will be
returned by the function

The DECLARE EXTERNAL FUNCTION statement makes a user-defined function available in the database.
UDF declarations must be made in each database that is going to use them. There is no need to
declare UDFs that will never be used.

The name of the external function must be unique among all function names. It may be different
from the exported name of the function, as specified in the ENTRY_POINT argument.

DECLARE EXTERNAL FUNCTION Input Parameters

The input parameters of the function follow the name of the function and are separated with
commas. Each parameter has an SQL data type specified for it. Arrays cannot be used as function
parameters. As well as the SQL types, the CSTRING type is available for specifying a null-terminated
string with a maximum length of LENGTH bytes.

By default, input parameters are passed by reference . The BY DESCRIPTOR clause may be specified

Chapter 5. Data Definition (DDL) Statements

166

instead, if the input parameter is passed by descriptor. Passing a parameter by descriptor makes it
possible to process NULLs.

Clauses and Keywords

RETURNS clause

(Required) specifies the output parameter returned by the function. A function is scalar: it
returns one and only one parameter. The output parameter can be of any SQL type (except an
array or an array element) or a null-terminated string (CSTRING). The output parameter can be
passed by reference (the default), by descriptor or by value. If the BY DESCRIPTOR clause is
specified, the output parameter is passed by descriptor. If the BY VALUE clause is specified, the
output parameter is passed by value.

PARAMETER keyword

specifies that the function returns the value from the parameter under number param_num . It is
necessary if you need to return a value of data type BLOB.

FREE_IT keyword

means that the memory allocated for storing the return value will be freed after the function is
executed. It is used only if the memory was allocated dynamically in the UDF. In such a UDF, the
memory must be allocated with the help of the ib_util_malloc function from the ib_util module,
a requirement for compatibility with the functions used in Firebird code and in the code of the
shipped UDF modules, for allocating and freeing memory.

ENTRY_POINT clause

specifies the name of the entry point (the name of the imported function), as exported from the
module.

MODULE_NAME clause

defines the name of the module where the exported function is located. The link to the module
should not be the full path and extension of the file, if that can be avoided. If the module is
located in the default location (in the ../UDF subdirectory of the Firebird server root) or in a
location explicitly configured in firebird.conf , it makes it easier to move the database between
different platforms. The UDFAccess parameter in the firebird.conf file allows access restrictions to
external functions modules to be configured.

Any user connected to the database can declare an external function (UDF).

Examples using DECLARE EXTERNAL FUNCTION

1. Declaring the addDay external function located in the fbudf module. The input and output
parameters are passed by reference.

DECLARE EXTERNAL FUNCTION addDay
Ê TIMESTAMP, INT
Ê RETURNS TIMESTAMP
Ê ENTRY_POINT 'addDay' MODULE_NAME 'fbudf';

Chapter 5. Data Definition (DDL) Statements

167

2. Declaring the invl external function located in the fbudf module. The input and output
parameters are passed by descriptor.

DECLARE EXTERNAL FUNCTION invl
Ê INT BY DESCRIPTOR, INT BY DESCRIPTOR
Ê RETURNS INT BY DESCRIPTOR
Ê ENTRY_POINT 'idNvl' MODULE_NAME 'fbudf';

3. Declaring the isLeapYear external function located in the fbudf module. The input parameter is
passed by reference, while the output parameter is passed by value.

DECLARE EXTERNAL FUNCTION isLeapYear
Ê TIMESTAMP
Ê RETURNS INT BY VALUE
Ê ENTRY_POINT 'isLeapYear' MODULE_NAME 'fbudf';

4. Declaring the i64Truncate external function located in the fbudf module. The input and output
parameters are passed by descriptor. The second parameter of the function is used as the return
value.

DECLARE EXTERNAL FUNCTION i64Truncate
Ê NUMERIC(18) BY DESCRIPTOR, NUMERIC(18) BY DESCRIPTOR
Ê RETURNS PARAMETER 2
Ê ENTRY_POINT 'fbtruncate' MODULE_NAME 'fbudf';

See also

ALTER EXTERNAL FUNCTION, DROP EXTERNAL FUNCTION

5.9.2. ALTER EXTERNAL FUNCTION

Used for

Changing the entry point and/or the module name for a user-defined function (UDF)

Available in

DSQL

Syntax

ALTER EXTERNAL FUNCTION funcname
Ê [ENTRY_POINT 'new_entry_point ']
Ê [MODULE_NAME 'new_library_name']

Table 43. ALTER EXTERNAL FUNCTION Statement Parameters

Chapter 5. Data Definition (DDL) Statements

168

Parameter Description

funcname Function name in the database

new_entry_point The new exported name of the function

new_library_name The new name of the module (MODULE_NAME from which the function is
exported). This will be the name of the file, without the Ò.dllÓ or Ò.soÓ file
extension.

The ALTER EXTERNAL FUNCTION statement changes the entry point and/or the module name for a user-
defined function (UDF). Existing dependencies remain intact after the statement containing the
change[s] is executed.

The ENTRY_POINT clause

is for specifying the new entry point (the name of the function as exported from the module).

The MODULE_NAME clause

is for specifying the new name of the module where the exported function is located.

Any user connected to the database can change the entry point and the module name.

Examples using ALTER EXTERNAL FUNCTION

1. Changing the entry point for an external function

ALTER EXTERNAL FUNCTION invl ENTRY_POINT 'intNvl';

2. Changing the module name for an external function

ALTER EXTERNAL FUNCTION invl MODULE_NAME 'fbudf2';

See also

DECLARE EXTERNAL FUNCTION, DROP EXTERNAL FUNCTION

5.9.3. DROP EXTERNAL FUNCTION

Used for

Removing a user-defined function (UDF) from a database

Available in

DSQL, ESQL

Syntax

DROP EXTERNAL FUNCTION funcname

Table 44. DROP EXTERNAL FUNCTION Statement Parameter

Chapter 5. Data Definition (DDL) Statements

169

Parameter Description

funcname Function name in the database

The DROP EXTERNAL FUNCTION statement deletes the declaration of a user-defined function from the
database. If there are any dependencies on the external function, the statement will fail and the
appropriate error will be raised.

Any user connected to the database can delete the declaration of an internal function.

Example using DROP EXTERNAL FUNCTION

Deleting the declaration of the addDay function.

DROP EXTERNAL FUNCTION addDay;

See also

DECLARE EXTERNAL FUNCTION

5.10. FILTER
A BLOB FILTER filter is a database object that is actually a special type of external function, with the
sole purpose of taking a BLOB object in one format and converting it to a BLOB object in another
format. The formats of the BLOB objects are specifed with user-defined BLOB subtypes.

External functions for converting BLOB types are stored in dynamic libraries and loaded when
necessary.

For more details on BLOB subtypes, see Binary Data Types .

5.10.1. DECLARE FILTER

Used for

Declaring a BLOB filter to the database

Available in

DSQL, ESQL

Chapter 5. Data Definition (DDL) Statements

170

Syntax

DECLARE FILTER filtername
Ê INPUT_TYPE <sub_type> OUTPUT_TYPE <sub_type>
Ê ENTRY_POINT 'function_name' MODULE_NAME 'library_name '

<sub_type> ::= number | <mnemonic>

<mnemonic> ::=
Ê BINARY | TEXT | BLR | ACL | RANGES
Ê | SUMMARY | FORMAT | TRANSACTION_DESCRIPTION
Ê | EXTERNAL_FILE_DESCRIPTION | user_defined

Table 45. DECLARE FILTER Statement Parameters

Parameter Description

filtername Filter name in the database. It may consist of up to 31 characters. It need
not be the same name as the name exported from the filter library via
ENTRY_POINT.

sub_type BLOB subtype

number BLOB subtype number (must be negative)

mnemonic BLOB subtype mnemonic name

function_name The exported name (entry point) of the function

library_name The name of the module where the filter is located

user_defined User-defined BLOB subtype mnemonic name

The DECLARE FILTER statement makes a BLOB filter available to the database. The name of the BLOB
filter must be unique among the names of BLOB filters.

Specifying the Subtypes

The subtypes can be specified as the subtype number or as the subtype mnemonic name. Custom
subtypes must be represented by negative numbers (from -1 to -32,768). An attempt to declare more
than one BLOB filter with the same combination of the input and output types will fail with an error.

INPUT_TYPE

clause defining the BLOB subtype of the object to be converted

OUTPUT_TYPE

clause defining the BLOB subtype of the object to be created.

Chapter 5. Data Definition (DDL) Statements

171

!

Mnemonic names can be defined for custom BLOB subtypes and inserted manually
into the system table RDB$TYPES system table:

INSERT INTO RDB$TYPES (RDB$FIELD_NAME, RDB$TYPE, RDB$TYPE_NAME)
VALUES ('RDB$FIELD_SUB_TYPE', -33, 'MIDI');

After the transaction is committed, the mnemonic names can be used in
declarations when you create new filters.

The value of the column RDB$FIELD_NAME must always be 'RDB$FIELD_SUB_TYPE'. If
mnemonic names in upper case, they can be used case-insensitively and without
quotation marks when a filter is declared.

Warning

From Firebird 3 onward, the system tables will no longer be writable by users.
However, inserting custom types into RDB$TYPES is still possible.

Parameters

ENTRY_POINT

clause defining the name of the entry point (the name of the imported function) in the module.

MODULE_NAME

The clause defining the name of the module where the exported function is located. By default,
modules must be located in the UDF folder of the root directory on the server. The UDFAccess
parameter in firebird.conf allows editing of access restrictions to filter libraries.

Any user connected to the database can declare a BLOB filter.

Examples of FILTER

1. Creating a BLOB filter using subtype numbers.

DECLARE FILTER DESC_FILTER
Ê INPUT_TYPE 1
Ê OUTPUT_TYPE -4
Ê ENTRY_POINT 'desc_filter'
Ê MODULE_NAME 'FILTERLIB';

2. Creating a BLOB filter using subtype mnemonic names.

DECLARE FILTER FUNNEL
Ê INPUT_TYPE blr OUTPUT_TYPE text
Ê ENTRY_POINT 'blr2asc' MODULE_NAME 'myfilterlib';

See also

Chapter 5. Data Definition (DDL) Statements

172

DROP FILTER

5.10.2. DROP FILTER

Used for

Removing a BLOB filter declaration from the database

Available in

DSQL, ESQL

Syntax

DROP FILTER filtername

Table 46. DROP FILTER Statement Parameter

Parameter Description

filtername Filter name in the database

The DROP FILTER statement removes the declaration of a BLOB filter from the database. Removing a
BLOB filter from a database makes it unavailable for use from that database. The dynamic library
where the conversion function is located remains intact and the removal from one database does
not affect other databases in which the same BLOB filter is still declared.

Any user connected to the database can drop a BLOB filter.

Example

Deleting a BLOB filter.

DROP FILTER DESC_FILTER;

See also

DECLARE FILTER

5.11. SEQUENCE (GENERATOR)
A sequence or a generator is a database object used to get unique number values to fill a series.
ÒSequenceÓ is the SQL-compliant term for the same thing which, in Firebird, has traditionally been
known as ÒgeneratorÓ. Both terms are implemented in Firebird, which recognises and has syntax
for both terms.

Sequences (or generators) are always stored as 64-bit integers, regardless of the SQL dialect of the
database.

Chapter 5. Data Definition (DDL) Statements

173

#

If a client is connected using Dialect 1, the server sends sequence values to it as 32-
bit integers. Passing a sequence value to a 32-bit field or variable will not cause
errors as long as the current value of the sequence does not exceed the limits of a
32-bit number. However, as soon as the sequence value exceeds this limit, a
database in Dialect 3 will produce an error. A database in Dialect 1 will keep
cutting the values, which will compromise the uniqueness of the series.

This section describes how to create, set and delete sequences.

5.11.1. CREATE SEQUENCE (GENERATOR)

Used for

Creating a new SEQUENCE (GENERATOR)

Available in

DSQL, ESQL

Syntax

CREATE {SEQUENCE | GENERATOR} seq_name

Table 47. CREATE SEQUENCE | CREATE GENERATOR Statement Parameter

Parameter Description

seq_name Sequence (generator) name. It may consist of up to 31 characters

The statements CREATE SEQUENCE and CREATE GENERATOR are synonymous!Ñ!both create a new
sequence. Either can be used but CREATE SEQUENCE is recommended if standards-compliant metadata
management is important.

When a sequence is created, its value is set to 0. Each time the NEXT VALUE FOR seq_name operator is
used with that sequence, its value increases by 1. The GEN_ID(seq_name, <step>) function can be
called instead, to ÒstepÓ the series by a different integer number.

Any user connected to the database can create a sequence (generator).

Examples

1. Creating the EMP_NO_GEN series using CREATE SEQUENCE.

CREATE SEQUENCE EMP_NO_GEN;

2. Creating the EMP_NO_GEN series using CREATE GENERATOR.

CREATE GENERATOR EMP_NO_GEN;

See also

Chapter 5. Data Definition (DDL) Statements

174

ALTER SEQUENCE, SET GENERATOR, DROP SEQUENCE (GENERATOR), NEXT VALUE FOR, GEN_ID() function

5.11.2. ALTER SEQUENCE

Used for

Setting the value of a sequence or generator to a specified value

Available in

DSQL

Syntax

ALTER SEQUENCE seq_name RESTART WITH new_val

Table 48. ALTER SEQUENCE Statement Parameters

Parameter Description

seq_name Sequence (generator) name

new_val New sequence (generator) value. A 64-bit integer from -2 -63 to 263-1.

The ALTER SEQUENCE statement sets the current value of a sequence or generator to the specified
value.

$ Incorrect use of the ALTER SEQUENCE statement (changing the current value of the
sequence or generator) is likely to break the logical integrity of data.

Any user connected to the database can set the sequence (generator) value.

Examples

1. Setting the value of the EMP_NO_GEN sequence to 145.

ALTER SEQUENCE EMP_NO_GEN RESTART WITH 145;

2. Doing the same thing, using SET GENERATOR:

SET GENERATOR EMP_NO_GEN TO 145;

See also

SET GENERATOR, CREATE SEQUENCE (GENERATOR), DROP SEQUENCE (GENERATOR), NEXT VALUE FOR, GEN_ID()
function

5.11.3. SET GENERATOR

Used for

Setting the value of a sequence or generator to a specified value

Chapter 5. Data Definition (DDL) Statements

175

Available in

DSQL, ESQL

Syntax

SET GENERATOR seq_name TO new_val

Table 49. SET GENERATOR Statement Parameters

Parameter Description

seq_name Generator (sequence) name

new_val New sequence (generator) value. A 64-bit integer from -2 -63 to 263-1.

The SET GENERATOR statement sets the current value of a sequence or generator to the specified
value.

!
Although SET GENERATOR is considered outdated, it is retained for backward
compatibility. Using the standards-compliant ALTER SEQUENCE is current and is
recommended.

Any user connected to the database can set the sequence (generator) value.

Examples

1. Setting the value of the EMP_NO_GEN sequence to 145:

SET GENERATOR EMP_NO_GEN TO 145;

2. Doing the same thing, using ALTER SEQUENCE:

ALTER SEQUENCE EMP_NO_GEN RESTART WITH 145;

See also

ALTER SEQUENCE, CREATE SEQUENCE (GENERATOR)

5.11.4. DROP SEQUENCE (GENERATOR)

Used for

Deleting SEQUENCE (GENERATOR)

Available in

DSQL, ESQL

Syntax

DROP {SEQUENCE | GENERATOR} seq_name

Chapter 5. Data Definition (DDL) Statements

176

Table 50. DROP SEQUENCE | DROP GENERATOR Statement Parameter

Parameter Description

seq_name Sequence (generator) name. It may consist of up to 31 characters

The statements DROP SEQUENCE and DROP GENERATOR statements are equivalent: both delete an existing
sequence (generator). Either is valid but DROP SEQUENCE, being current, is recommended.

The statements will fail if the sequence (generator) has dependencies.

Any user connected to the database can drop a sequence (generator).

Example

Dropping the EMP_NO_GEN series:

DROP SEQUENCE EMP_NO_GEN;

See also

CREATE SEQUENCE (GENERATOR), ALTER SEQUENCE, SET GENERATOR

5.12. EXCEPTION
This section describes how to create, modify and delete custom exceptions for use in error handlers
in PSQL modules.

5.12.1. CREATE EXCEPTION

Used for

Creating a new exception for use in PSQL modules

Available in

DSQL, ESQL

Syntax

CREATE EXCEPTION exception_name ' message'

Table 51. CREATE EXCEPTION Statement Parameters

Parameter Description

exception_name Exception name. The maximum length is 31 characters

message Default error message. The maximum length is 1,021 characters

The statement CREATE EXCEPTION creates a new exception for use in PSQL modules. If an exception of
the same name exists, the statement will fail with an appropriate error message.

The exception name is a standard identifier. In a Dialect 3 database, it can be enclosed in double

Chapter 5. Data Definition (DDL) Statements

177

quotes to make it case-sensitive and, if required, to use characters that are not valid in regular
identifiers. See Identifiers for more information.

The default message is stored in character set NONE, i.e., in characters of any single-byte character
set. The text can be overridden in the PSQL code when the exception is thrown.

Any user connected to the database can create an exception.

Examples

1. Creating an exception named E_LARGE_VALUE:

CREATE EXCEPTION E_LARGE_VALUE
Ê 'The value is out of range';

2. Creating an exception named ERROR_REFIN_RATE:

CREATE EXCEPTION ERROR_REFIN_RATE
Ê 'Error detected in the spread of discount rates';

!

Tips

Grouping CREATE EXCEPTION statements together in system update scripts will
simplify working with them and documenting them. A system of prefixes for
naming and categorising groups of exceptions is recommended.

Custom exceptions are stored in the system table RDB$EXCEPTIONS.

See also

ALTER EXCEPTION, CREATE OR ALTER EXCEPTION, DROP EXCEPTION, RECREATE EXCEPTION

5.12.2. ALTER EXCEPTION

Used for

Modifying the message returned from a custom exception

Available in

DSQL, ESQL

Syntax

ALTER EXCEPTION exception_name ' message'

Table 52. ALTER EXCEPTION Statement Parameters

Parameter Description

exception_name Exception name

Chapter 5. Data Definition (DDL) Statements

178

Parameter Description

message New default error message. The maximum length is 1,021 characters

The statement ALTER EXCEPTION can be used at any time, to modify the default text of the message.
Any user connected to the database can alter an exception message.

Examples

1. Changing the default message for the exception E_LARGE_VALUE:

ALTER EXCEPTION E_LARGE_VALUE
Ê 'The value exceeds the prescribed limit of 32,765 bytes';

2. Changing the default message for the exception ERROR_REFIN_RATE:

ALTER EXCEPTION ERROR_REFIN_RATE
Ê 'Rate is outside the allowed range';

See also

CREATE EXCEPTION, CREATE OR ALTER EXCEPTION, DROP EXCEPTION, RECREATE EXCEPTION

5.12.3. CREATE OR ALTER EXCEPTION

Used for

Modifying the message returned from a custom exception, if the exception exists; otherwise,
creating a new exception

Available in

DSQL

Syntax

CREATE OR ALTER EXCEPTION exception_name ' message'

Table 53. CREATE OR ALTER EXCEPTION Statement Parameters

Parameter Description

exception_name Exception name

message Error message. The maximum length is limited to 1,021 characters

The statement CREATE OR ALTER EXCEPTION is used to create the specified exception if it does not
exist, or to modify the text of the error message returned from it if it exists already. If an existing
exception is altered by this statement, any existing dependencies will remain intact.

Any user connected to the database can use this statement to create an exception or alter the text of
one that already exists.

Chapter 5. Data Definition (DDL) Statements

179

Example

Changing the message for the exception E_LARGE_VALUE:

CREATE OR ALTER EXCEPTION E_LARGE_VALUE
Ê 'The value is higher than the permitted range 0 to 32,765';

See also

CREATE EXCEPTION, ALTER EXCEPTION, RECREATE EXCEPTION

5.12.4. DROP EXCEPTION

Used for

Deleting a custom exception

Available in

DSQL, ESQL

Syntax

DROP EXCEPTION exception_name

Table 54. DROP EXCEPTION Statement Parameter

Parameter Description

exception_name Exception name

The statement DROP EXCEPTION is used to delete an exception. Any dependencies on the exception
will cause the statement to fail and the exception will not be deleted.

If an exception is used only in stored procedures, it can be deleted at any time. If it is used in a
trigger, it cannot be deleted.

In planning to delete an exception, all references to it should first be removed from the code of
stored procedures, to avoid its absence causing errors.

Any user connected to the database can delete an exception.

Examples

1. Deleting exception ERROR_REFIN_RATE:

DROP EXCEPTION ERROR_REFIN_RATE;

2. Deleting exception E_LARGE_VALUE:

DROP EXCEPTION E_LARGE_VALUE;

Chapter 5. Data Definition (DDL) Statements

180

See also

CREATE EXCEPTION, RECREATE EXCEPTION

5.12.5. RECREATE EXCEPTION

Used for

Creating a new custom exception or recreating an existing one

Available in

DSQL

Syntax

RECREATE EXCEPTION exception_name ' message'

Table 55. RECREATE EXCEPTION Statement Parameters

Parameter Description

exception_name Exception name. The maximum length is 31 characters

message Error message. The maximum length is limited to 1,021 characters

The statement RECREATE EXCEPTION creates a new exception for use in PSQL modules. If an exception
of the same name exists already, the RECREATE EXCEPTION statement will try to delete it and create a
new one. If there are any dependencies on the existing exception, the attempted deletion fails and
RECREATE EXCEPTION is not executed.

Any user connected to the database can [re]create an exception.

Example

Recreating the E_LARGE_VALUE exception:

RECREATE EXCEPTION E_LARGE_VALUE
Ê 'The value exceeds its limit';

See also

CREATE EXCEPTION, DROP EXCEPTION, CREATE OR ALTER EXCEPTION

5.13. COLLATION

5.13.1. CREATE COLLATION

Used for

Making a new collation for a supported character set available to the database

Available in

DSQL

Chapter 5. Data Definition (DDL) Statements

181

Syntax

CREATE COLLATION collname
Ê FOR charset
Ê [FROM basecoll | FROM EXTERNAL ('extname')]
Ê [NO PAD | PAD SPACE]
Ê [CASE [IN]SENSITIVE]
Ê [ACCENT [IN]SENSITIVE]
Ê ['<specific-attributes>']

<specific-attributes> ::= <attribute> [; <attribute> ...]

<attribute> ::= attrname=attrvalue

Table 56. CREATE COLLATION Statement Parameters

Parameter Description

collname The name to use for the new collation. The maximum length is 31
characters

charset A character set present in the database

basecoll A collation already present in the database

extname The collation name used in the .conf file

The CREATE COLLATION statement does not ÒcreateÓ anything: its purpose is to make a collation
known to a database. The collation must already be present on the system, typically in a library file,
and must be properly registered in a .conf file in the intl subdirectory of the Firebird installation.

The collation may alternatively be based on one that is already present in the database.

How the Engine Detects the Collation

If no FROM clause is present, Firebird will scan the .conf file(s) in the intl subdirectory for a collation
with the name specified as the object of CREATE COLLATION. In other words, omitting the FROM
basecoll clause is equivalent to specifying FROM EXTERNAL ('collname').

The!Ñ!single-quoted!Ñ! extname is case-sensitive and must correspond exactly with the collation
name in the .conf file. The collname , charset and basecoll parameters are case-insensitive unless
enclosed in double-quotes.

Specific Attributes

The available specific attributes are listed in the table below. Not all specific attributes apply to
every collation, even if specifying them does not cause an error.

" Specific attributes are case sensitive.

In the table, Ò1 bpcÓ indicates that an attribute is valid for collations of character sets using 1 byte
per character (so-called narrow character sets). ÒUNIÓ stands for ÒUNICODE collationsÓ.

Chapter 5. Data Definition (DDL) Statements

182

Table 57. Specific Collation Attributes

Atrribute Values Valid for Comment

DISABLE-COMPRESSIONS 0, 1 1 bpc Disables compressions (a.k.a.
contractions). Compressions cause
certain character sequences to be sorted
as atomic units, e.g. Spanish c+h as a
single character ch

DISABLE-EXPANSIONS 0, 1 1 bpc Disables expansions. Expansions cause
certain characters (e.g. ligatures or
umlauted vowels) to be treated as
character sequences and sorted
accordingly

ICU-VERSION default or
M.m

UNI Specifies the ICU library version to use.
Valid values are the ones defined in the
applicable <intl_module> element in
intl/fbintl.conf . Format: either the
string literal ÒdefaultÓ or a major+minor
version number like Ò3.0Ó (both
unquoted).

LOCALE xx_YY UNI Specifies the collation locale. Requires
complete version of ICU libraries.
Format: a locale string like Òdu_NLÓ
(unquoted)

MULTI-LEVEL 0, 1 1 bpc Uses more than one ordering level

NUMERIC-SORT 0, 1 UNI Treats contiguous groups of decimal
digits in the string as atomic units and
sorts them numerically. (This is also
known as natural sorting)

SPECIALS-FIRST 0, 1 1 bpc Orders special characters (spaces,
symbols etc.) before alphanumeric
characters

!

If you want to add a new character set with its default collation into your database,
declare and run the stored procedure sp_register_character_set(name,
max_bytes_per_character) , found in misc/intl.sql under the Firebird installation
directory.

In order for this to work, the character set must be present on the system and
registered in a .conf file in the intl subdirectory.

Any user connected to the database can use CREATE COLLATION to add a new collation.

Examples using CREATE COLLATION

1. Creating a collation using the name found in the fbintl.conf file (case-sensitive).

Chapter 5. Data Definition (DDL) Statements

183

CREATE COLLATION ISO8859_1_UNICODE FOR ISO8859_1;

2. Creating a collation using a special (user-defined) name (the ÒexternalÓ name must completely
match the name in the fbintl.conf file).

CREATE COLLATION LAT_UNI
Ê FOR ISO8859_1
Ê FROM EXTERNAL ('ISO8859_1_UNICODE');

3. Creating a case-insensitive collation based on one already existing in the database.

CREATE COLLATION ES_ES_NOPAD_CI
Ê FOR ISO8859_1
Ê FROM ES_ES
Ê NO PAD
Ê CASE INSENSITIVE;

4. Creating a case-insensitive collation based on one already existing in the database with specific
attributes.

CREATE COLLATION ES_ES_CI_COMPR
Ê FOR ISO8859_1
Ê FROM ES_ES
Ê CASE INSENSITIVE
Ê 'DISABLE-COMPRESSIONS=0';

5. Creating a case-insensitive collation by the value of numbers (the so-called natural collation).

CREATE COLLATION nums_coll FOR UTF8
Ê FROM UNICODE
Ê CASE INSENSITIVE 'NUMERIC-SORT=1';

CREATE DOMAIN dm_nums AS varchar(20)
Ê CHARACTER SET UTF8 COLLATE nums_coll; -- original (manufacturer) numbers

CREATE TABLE wares(id int primary key, articul dm_nums ...);

See also

DROP COLLATION

5.13.2. DROP COLLATION

Used for

Removing a collation from the database

Chapter 5. Data Definition (DDL) Statements

184

Available in

DSQL

Syntax

DROP COLLATION collname

Table 58. DROP COLLATION Statement Parameters

Parameter Description

collname The name of the collation

The DROP COLLATION statement removes the specified collation from the database, if it exists. An
error will be raised if the specified collation is not present.

!
If you want to remove an entire character set with all its collations from the
database, declare and execute the stored procedure
sp_unregister_character_set(name) from the misc/intl.sql subdirectory of the
Firebird installation.

Any user connected to the database can use DROP COLLATION to remove a collation.

Example using DROP COLLATION

Deleting the ES_ES_NOPAD_CI collation.

DROP COLLATION ES_ES_NOPAD_CI;

See also

CREATE COLLATION

5.14. CHARACTER SET

5.14.1. ALTER CHARACTER SET

Used for

Setting the default collation for a character set

Available in

DSQL

Syntax

ALTER CHARACTER SET charset
Ê SET DEFAULT COLLATION collation

Table 59. ALTER CHARACTER SET Statement Parameters

Chapter 5. Data Definition (DDL) Statements

185

Parameter Description

charset Character set identifier

collation The name of the collation

The statement ALTER CHARACTER SET statement changes the default collation for the specified
character set. It will affect the future usage of the character set, except for cases where the COLLATE
clause is explicitly overridden. In that case, the collation sequence of existing domains, columns
and PSQL variables will remain intact after the change to the default collation of the underlying
character set.

!

If you change the default collation for the database character set (the one defined
when the database was created), it will change the default collation for the
database.

If you change the default collation for the character set that was specified during
the connection, string constants will be interpreted according to the new collation
value, except in those cases where the character set and/or the collation have been
overridden.

Example of use

Setting the default UNICODE_CI_AI collation for the UTF8 encoding.

ALTER CHARACTER SET UTF8
Ê SET DEFAULT COLLATION UNICODE_CI_AI;

5.15. ROLE
A role is a database object that packages a set of SQL privileges . Roles implement the concept of
access control at a group level. Multiple privileges are granted to the role and then that role can be
granted to or revoked from one or many users.

A user that is granted a role must supply that role in his login credentials in order to exercise the
associated privileges. Any other privileges granted to the user are not affected by his login with the
role. Logging in with multiple roles simultaneously is not supported.

In this section the tasks of creating and dropping roles are discussed.

5.15.1. CREATE ROLE

Used for

Creating a new ROLE object

Available in

DSQL, ESQL

Chapter 5. Data Definition (DDL) Statements

186

Syntax

CREATE ROLE rolename

Table 60. CREATE ROLE Statement Parameter

Parameter Description

rolename Role name. The maximum length is 31 characters

The statement CREATE ROLE creates a new role object, to which one or more privileges can be
granted subsequently. The name of a role must be unique among the names of roles in the current
database.

$
It is advisable to make the name of a role unique among user names as well. The
system will not prevent the creation of a role whose name clashes with an existing
user name but, if it happens, the user will be unable to connect to the database.

Any user connected to the database can create a role. The user that creates a role becomes its
owner.

Example

Creating a role named SELLERS:

CREATE ROLE SELLERS;

See also

DROP ROLE, GRANT, REVOKE

5.15.2. ALTER ROLE

ALTER ROLE has no place in the create-alter-drop paradigm for database objects since a role has no
attributes that can be modified. Its actual effect is to alter an attribute of the database: Firebird uses
it to enable and disable the capability for Windows Adminstrators to assume administrator
privileges automatically when logging in.

This procedure can affect only one role: the system-generated role RDB$ADMIN that exists in every
database of ODS 11.2 or higher. Several factors are involved in enabling this feature.

For details, see AUTO ADMIN MAPPING in the Security chapter.

5.15.3. DROP ROLE

Used for

Deleting a role

Available in

DSQL, ESQL

Chapter 5. Data Definition (DDL) Statements

187

Syntax

DROP ROLE rolename

The statement DROP ROLE deletes an existing role. It takes just a single argument, the name of the
role. Once the role is deleted, the entire set of privileges is revoked from all users and objects that
were granted the role.

A role can be deleted by its owner or by an administrator .

Example

Deleting the role SELLERS:

DROP ROLE SELLERS;

See also

CREATE ROLE, GRANT, REVOKE

5.16. COMMENTS
Database objects and a database itself may contain comments. It is a convenient mechanism for
documenting the development and maintenance of a database. Comments created with COMMENT ON
will survive a gbak backup and restore.

5.16.1. COMMENT ON

Used for

Documenting metadata

Available in

DSQL

Chapter 5. Data Definition (DDL) Statements

188

Syntax

COMMENT ON <object> IS {'sometext' | NULL}

<object> ::=
Ê DATABASE
Ê | <basic-type> objectname
Ê | COLUMN relationname . fieldname
Ê | PARAMETER procname. paramname

<basic-type> ::=
Ê CHARACTER SET
Ê | COLLATION
Ê | DOMAIN
Ê | EXCEPTION
Ê | EXTERNAL FUNCTION
Ê | FILTER
Ê | GENERATOR
Ê | INDEX
Ê | PROCEDURE
Ê | ROLE
Ê | SEQUENCE
Ê | TABLE
Ê | TRIGGER
Ê | VIEW

Table 61. COMMENT ON Statement Parameters

Parameter Description

sometext Comment text

basic-type Metadata object type

objectname Metadata object name

relationname Name of table or view

procname Name of stored procedure

paramname Name of a stored procedure parameter

The COMMENT ON statement adds comments for database objects (metadata). Comments are saved to
text fields of the BLOB type in the RDB$DESCRIPTION column of the corresponding system tables. Client
applications can view comments from these fields.

! If you add an empty comment (Ò '' Ó), it will be saved as NULL in the database.

The table or procedure owner and Administrators have the authority to use COMMENT ON.

Examples using COMMENT ON

1. Adding a comment for the current database

Chapter 5. Data Definition (DDL) Statements

189

COMMENT ON DATABASE IS 'It is a test (''my.fdb'') database';

2. Adding a comment for the METALS table

COMMENT ON TABLE METALS IS 'Metal directory';

3. Adding a comment for the ISALLOY field in the METALS table

COMMENT ON COLUMN METALS.ISALLOY IS '0 = fine metal, 1 = alloy';

4. Adding a comment for a parameter

COMMENT ON PARAMETER ADD_EMP_PROJ.EMP_NO IS 'Employee ID';

Chapter 5. Data Definition (DDL) Statements

190

Chapter 6. Data Manipulation (DML)
Statements

"
REVIEW STATUS

All sections from this point forward to the end of the chapter are awaiting
technical and editorial review.

DML!Ñ!data manipulation language!Ñ!is the subset of SQL that is used by applications and
procedural modules to extract and change data. Extraction, for the purpose of reading data, both
raw and manipulated, is achieved with the SELECT statement. INSERT is for adding new data and
DELETE is for erasing data that are no longer required. UPDATE, MERGE and UPDATE OR INSERT all modify
data in various ways.

6.1. SELECT
Used for

Retrieving data

Available in

DSQL, ESQL, PSQL

Global syntax

[WITH [RECURSIVE] <cte> [, <cte> ...]]
SELECT
Ê [FIRST m] [SKIP n]
Ê [DISTINCT | ALL] <columns>
FROM
Ê <source> [[AS] alias]
Ê [<joins>]
[WHERE <condition>]
[GROUP BY <grouping-list>
[HAVING <aggregate-condition>]]
[PLAN <plan-expr>]
[UNION [DISTINCT | ALL] <other-select>]
[ORDER BY <ordering-list>]
[ROWS <m> [TO <n>]]
[FOR UPDATE [OF <columns>]]
[WITH LOCK]
[INTO <variables>]

<variables> ::= [:]varname [, [:]varname ...]

Description

The SELECT statement retrieves data from the database and hands them to the application or the
enclosing SQL statement. Data are returned in zero or more rows , each containing one or more

Chapter 6. Data Manipulation (DML) Statements

191

columns or fields . The total of rows returned is the result set of the statement.

The only mandatory parts of the SELECT statement are:

¥ The SELECT keyword, followed by a columns list. This part specifies what you want to retrieve.

¥ The FROM keyword, followed by a selectable object. This tells the engine where you want to get it
from .

In its most basic form, SELECT retrieves a number of columns from a single table or view, like this:

select id, name, address
Ê from contacts

Or, to retrieve all the columns:

select * from sales

In practice, the rows retrieved are often limited by a WHERE clause. The result set may be sorted by
an ORDER BY clause, and FIRST, SKIP or ROWS may further limit the number of output rows. The
column list may contain all kinds of expressions instead of just column names, and the source need
not be a table or view: it may also be a derived table, a common table expression (CTE) or a
selectable stored procedure (SP). Multiple sources may be combined in a JOIN, and multiple result
sets may be combined in a UNION.

The following sections discuss the available SELECT subclauses and their usage in detail.

6.1.1. FIRST, SKIP

Used for

Retrieving a slice of rows from an ordered set

Available in

DSQL, PSQL

Syntax

SELECT
Ê [FIRST <m>] [SKIP <n>]
Ê FROM ...
Ê ...

<m>, <n> ::=
Ê <integer-literal>
Ê | <query-parameter>
Ê | (<integer-expression>)

Table 62. Arguments for the FIRST and SKIP Clauses

Chapter 6. Data Manipulation (DML) Statements

192

Argument Description

integer-literal Integer literal

query-parameter Query parameter place-holder. ? in DSQL and :paramname in PSQL

integer-expression Expression returning an integer value

!
FIRST and SKIP are non-standard syntax

FIRST and SKIP are Firebird-specific, non-SQL-compliant keywords. You are advised
to use the ROWS syntax wherever possible.

Description

FIRST limits the output of a query to the first m rows. SKIP will suppress the given n rows before
starting to return output.

FIRST and SKIP are both optional. When used together as in Ò FIRST m SKIP nÓ, the n topmost rows of
the output set are discarded and the first m rows of the rest of the set are returned.

Characteristics of FIRST and SKIP

¥ Any argument to FIRST and SKIP that is not an integer literal or an SQL parameter must be
enclosed in parentheses. This implies that a subquery expression must be enclosed in two pairs
of parentheses.

¥ SKIP 0 is allowed but totally pointless.

¥ FIRST 0 is also allowed and returns an empty set.

¥ Negative SKIP and/or FIRST values result in an error.

¥ If a SKIP lands past the end of the dataset, an empty set is returned.

¥ If the number of rows in the dataset (or the remainder left after a SKIP) is less than the value of
the m argument supplied for FIRST, that smaller number of rows is returned. These are valid
results, not error conditions.

#

An error occurs when you use FIRST in subqueries. This query

DELETE FROM MYTABLE
Ê WHERE ID IN (SELECT FIRST 10 ID FROM MYTABLE)

will delete all records from the table. The subquery retrieves 10 rows each time,
deletes them and the operation is repeated until the table is empty. Keep it in
mind! Or, better, use the ROWS clause in the DELETE statement.

Examples of FIRST/SKIP

The following query will return the first 10 names from the People table:

Chapter 6. Data Manipulation (DML) Statements

193

select first 10 id, name from People
Ê order by name asc

The following query will return everything but the first 10 names:

select skip 10 id, name from People
Ê order by name asc

And this one returns the last 10 rows. Notice the double parentheses:

select skip ((select count(*) - 10 from People))
Ê id, name from People
Ê order by name asc

This query returns rows 81 to 100 of the People table:

select first 20 skip 80 id, name from People
Ê order by name asc

See also

ROWS

6.1.2. The SELECT Columns List

The columns list contains one or more comma-separated value expressions. Each expression
provides a value for one output column. Alternatively, * (Òselect starÓ) can be used to stand for all
the columns in a relation (i.e. a table, view or selectable stored procedure).

Chapter 6. Data Manipulation (DML) Statements

194

Syntax

SELECT
Ê [...]
Ê [DISTINCT | ALL] <output-column> [, <output-column> ...]
Ê [...]
Ê FROM ...

<output-column> ::=
Ê [<qualifier>.]*
Ê | <value-expression> [COLLATE collation] [[AS] alias]

<value-expression> ::=
Ê [<qualifier>.] table-column
Ê | [<qualifier>.] view-column
Ê | [<qualifier>.] selectable-SP-outparm
Ê | <literal>
Ê | <context-variable>
Ê | <function-call>
Ê | <single-value-subselect>
Ê | <CASE-construct>
Ê | any other expression returning a single
Ê value of a Firebird data type or NULL

<qualifier> ::= a relation name or alias

Table 63. Arguments for the SELECT Columns List

Argument Description

qualifier Name of relation (view, stored procedure, derived table); or an alias for it

collation Only for character-type columns: a collation name that exists and is valid
for the character set of the data

alias Column or field alias

table-column Name of a table column

view-column Name of a view column

selectable-SP-outparm Declared name of an output parameter of a selectable stored procedure

constant A constant

context-variable Context variable

function-call Scalar or aggregate function call expression

single-value-subselect A subquery returning one scalar value (singleton)

CASE-construct CASE construct setting conditions for a return value

other-single-value-expr Any other expression returning a single value of a Firebird data type; or
NULL

Description

Chapter 6. Data Manipulation (DML) Statements

195

It is always valid to qualify a column name (or Ò *Ó) with the name or alias of the table, view or
selectable SP to which it belongs, followed by a dot (Ô . Õ). For example, relationname.columnname,
relationname.* , alias.columnname, alias.* . Qualifying is required if the column name occurs in more
than one relation taking part in a join. Qualifying Ò *Ó is always mandatory if it is not the only item
in the column list.

"
Aliases obfuscate the original relation name: once a table, view or procedure has
been aliased, only the alias can be used as its qualifier throughout the query. The
relation name itself becomes unavailable.

The column list may optionally be preceded by one of the keywords DISTINCT or ALL:

¥ DISTINCT filters out any duplicate rows. That is, if two or more rows have the same values in
every corresponding column, only one of them is included in the result set

¥ ALL is the default: it returns all of the rows, including duplicates. ALL is rarely used; it is
supported for compliance with the SQL standard.

A COLLATE clause will not change the appearance of the column as such. However, if the specified
collation changes the case or accent sensitivity of the column, it may influence:

¥ The ordering, if an ORDER BY clause is also present and it involves that column

¥ Grouping, if the column is part of a GROUP BY clause

¥ The rows retrieved (and hence the total number of rows in the result set), if DISTINCT is used

Examples of SELECT queries with different types of column lists

A simple SELECT using only column names:

select cust_id, cust_name, phone
Ê from customers
Ê where city = 'London'

A query featuring a concatenation expression and a function call in the columns list:

select 'Mr./Mrs. ' || lastname, street, zip, upper(city)
Ê from contacts
Ê where date_last_purchase(id) = current_date

A query with two subselects:

select p.fullname,
Ê (select name from classes c where c.id = p.class) as class,
Ê (select name from mentors m where m.id = p.mentor) as mentor
from pupils p

Chapter 6. Data Manipulation (DML) Statements

196

The following query accomplishes the same as the previous one using joins instead of subselects:

select p.fullname,
Ê c.name as class,
Ê m.name as mentor
Ê join classes c on c.id = p.class
from pupils p
Ê join mentors m on m.id = p.mentor

This query uses a CASE construct to determine the correct title, e.g. when sending mail to a person:

select case upper(sex)
Ê when 'F' then 'Mrs.'
Ê when 'M' then 'Mr.'
Ê else ''
Ê end as title,
Ê lastname,
Ê address
from employees

Querying a selectable stored procedure:

select * from interesting_transactions(2010, 3, 'S')
Ê order by amount

Selecting from columns of a derived table. A derived table is a parenthesized SELECT statement
whose result set is used in an enclosing query as if it were a regular table or view. The derived table
is shown in bold here:

select fieldcount,
Ê count(relation) as num_tables
from (select r.rdb$relation_name as relation,
Ê count(*) as fieldcount
Ê from rdb$relations r
Ê join rdb$relation_fields rf
Ê on rf.rdb$relation_name = r.rdb$relation_name
Ê group by relation)
group by fieldcount

Asking the time through a context variable (CURRENT_TIME):

select current_time from rdb$database

For those not familiar with RDB$DATABASE: this is a system table that is present in all Firebird
databases and is guaranteed to contain exactly one row. Although it wasnÕt created for this purpose,

Chapter 6. Data Manipulation (DML) Statements

197

it has become standard practice among Firebird programmers to select from this table if you want
to select Òfrom nothingÓ, i.e., if you need data that are not bound to a any table or view, but can be
derived from the expressions in the output columns alone. Another example is:

select power(12, 2) as twelve_squared, power(12, 3) as twelve_cubed
Ê from rdb$database

Finally, an example where you select some meaningful information from RDB$DATABASE itself:

select rdb$character_set_name from rdb$database

As you may have guessed, this will give you the default character set of the database.

See also

Functions , Aggregate Functions , Context Variables , CASE, Subqueries

6.1.3. The FROM clause

The FROM clause specifies the source(s) from which the data are to be retrieved. In its simplest form,
this is just a single table or view. But the source can also be a selectable stored procedure, a derived
table or a common table expression. Multiple sources can be combined using various types of joins.

This section concentrates on single-source selects. Joins are discussed in a following section.

Chapter 6. Data Manipulation (DML) Statements

198

Syntax

SELECT
Ê ...
Ê FROM <source>
Ê [<joins>]
Ê [...]

<source> ::=
Ê { table
Ê | view
Ê | selectable-stored-procedure [(<args>)]
Ê | <derived-table>
Ê | <common-table-expression>
Ê } [[AS] alias]

<derived-table> ::=
Ê (<select-statement>) [[AS] alias] [(<column-aliases>)]

<common-table-expression> ::=
Ê WITH [RECURSIVE] <cte-def> [, <cte-def> ...]
Ê <select-statement>

<cte-def> ::= name [(<column-aliases>)] AS (<select-statement>)

<column-aliases> ::= column-alias [, column-alias ...]

Table 64. Arguments for the FROM Clause

Argument Description

table Name of a table

view Name of a view

selectable-stored-
procedure

Name of a selectable stored procedure

args Selectable stored procedure arguments

derived table Derived table query expression

cte-def Common table expression (CTE) definition, including an Òad hocÓ name

select-statement Any SELECT statement

column-aliases Alias for a column in a relation, CTE or derived table

name The Òad hocÓ name for a CTE

alias The alias of a data source (table, view, procedure, CTE, derived table)

Selecting FROM a table or view

When selecting from a single table or view, the FROM clause need not contain anything more than
the name. An alias may be useful or even necessary if there are subqueries that refer to the main

Chapter 6. Data Manipulation (DML) Statements

199

select statement (as they often do!Ñ!subqueries like this are called correlated subqueries).

Examples

select id, name, sex, age from actors
where state = 'Ohio'

select * from birds
where type = 'flightless'
order by family, genus, species

select firstname,
Ê middlename,
Ê lastname,
Ê date_of_birth,
Ê (select name from schools s where p.school = s.id) schoolname
from pupils p
where year_started = '2012'
order by schoolname, date_of_birth

"

Never mix column names with column aliases!

If you specify an alias for a table or a view, you must always use this alias in place
of the table name whenever you query the columns of the relation (and wherever
else you make a reference to columns, such as ORDER BY, GROUP BY and WHERE
clauses).

Correct use:

SELECT PEARS
FROM FRUIT;

SELECT FRUIT.PEARS
FROM FRUIT;

SELECT PEARS
FROM FRUIT F;

SELECT F.PEARS
FROM FRUIT F;

Incorrect use:

SELECT FRUIT.PEARS
FROM FRUIT F;

Chapter 6. Data Manipulation (DML) Statements

200

Selecting FROM a stored procedure

A selectable stored procedure is a procedure that:

¥ contains at least one output parameter, and

¥ utilizes the SUSPEND keyword so the caller can fetch the output rows one by one, just as when
selecting from a table or view.

The output parameters of a selectable stored procedure correspond to the columns of a regular
table.

Selecting from a stored procedure without input parameters is just like selecting from a table or
view:

select * from suspicious_transactions
Ê where assignee = 'John'

Any required input parameters must be specified after the procedure name, enclosed in
parentheses:

select name, az, alt from visible_stars('Brugge', current_date, '22:30')
Ê where alt >= 20
Ê order by az, alt

Values for optional parameters (that is, parameters for which default values have been defined)
may be omitted or provided. However, if you provide them only partly, the parameters you omit
must all be at the tail end.

Supposing that the procedure visible_stars from the previous example has two optional
parameters: min_magn (numeric(3,1)) and spectral_class (varchar(12)), the following queries are all
valid:

select name, az, alt
from visible_stars('Brugge', current_date, '22:30');

select name, az, alt
from visible_stars('Brugge', current_date, '22:30', 4.0);

select name, az, alt
from visible_stars('Brugge', current_date, '22:30', 4.0, 'G');

But this one isnÕt, because thereÕs a ÒholeÓ in the parameter list:

select name, az, alt
from visible_stars('Brugge', current_date, '22:30', 'G');

Chapter 6. Data Manipulation (DML) Statements

201

An alias for a selectable stored procedure is specified after the parameter list:

select
Ê number,
Ê (select name from contestants c where c.number = gw.number)
from get_winners('#34517', 'AMS') gw

If you refer to an output parameter (ÒcolumnÓ) by qualifying it with the full procedure name, the
procedure alias should be omitted:

select
Ê number,
Ê (select name from contestants c where c.number = get_winners.number)
from get_winners('#34517', 'AMS')

See also

Stored Procedures , CREATE PROCEDURE

Selecting FROM a derived table

A derived table is a valid SELECT statement enclosed in parentheses, optionally followed by a table
alias and/or column aliases. The result set of the statement acts as a virtual table which the
enclosing statement can query.

Syntax

(<select-query>)
Ê [[AS] derived-table-alias]
Ê [(<derived-column-aliases>)]

<derived-column-aliases> := column-alias [, column-alias ...]

The set returned data set by this Ò SELECT FROM (SELECT FROM..)Ó style of statement is a virtual table
that can be queried within the enclosing statement, as if it were a regular table or view.

Sample using a derived table

The derived table in the query below returns the list of table names in the database and the
number of columns in each. A Òdrill-downÓ query on the derived table returns the counts of fields
and the counts of tables having each field count:

Chapter 6. Data Manipulation (DML) Statements

202

SELECT
Ê FIELDCOUNT,
Ê COUNT(RELATION) AS NUM_TABLES
FROM (SELECT
Ê R.RDB$RELATION_NAME RELATION,
Ê COUNT(*) AS FIELDCOUNT
Ê FROM RDB$RELATIONS R
Ê JOIN RDB$RELATION_FIELDS RF
Ê ON RF.RDB$RELATION_NAME = R.RDB$RELATION_NAME
Ê GROUP BY RELATION)
GROUP BY FIELDCOUNT

A trivial example demonstrating how the alias of a derived table and the list of column aliases (both
optional) can be used:

SELECT
Ê DBINFO.DESCR, DBINFO.DEF_CHARSET
FROM (SELECT *
Ê FROM RDB$DATABASE) DBINFO
Ê (DESCR, REL_ID, SEC_CLASS, DEF_CHARSET)

!

More about Derived Tables

Derived tables can

¥ be nested

¥ be unions, and can be used in unions

¥ contain aggregate functions, subqueries and joins

¥ be used in aggregate functions, subqueries and joins

¥ be calls to selectable stored procedures or queries to them

¥ have WHERE, ORDER BY and GROUP BY clauses, FIRST/SKIP or ROWS directives, et al.

Furthermore,

¥ Each column in a derived table must have a name. If it does not have a name,
such as when it is a constant or a run-time expression, it should be given an
alias, either in the regular way or by including it in the list of column aliases in
the derived tableÕs specification.

" The list of column aliases is optional but, if it exists, it must contain an alias
for every column in the derived table

¥ The optimizer can process derived tables very effectively. However, if a
derived table is included in an inner join and contains a subquery, the
optimizer will be unable to use any join order.

A more useful example

Chapter 6. Data Manipulation (DML) Statements

203

Suppose we have a table COEFFS which contains the coefficients of a number of quadratic equations
we have to solve. It has been defined like this:

create table coeffs (
Ê a double precision not null,
Ê b double precision not null,
Ê c double precision not null,
Ê constraint chk_a_not_zero check (a <> 0)
)

Depending on the values of a, b and c, each equation may have zero, one or two solutions. It is
possible to find these solutions with a single-level query on table COEFFS, but the code will look
rather messy and several values (like the discriminant) will have to be calculated multiple times
per row. A derived table can help keep things clean here:

select
Ê iif (D >= 0, (-b - sqrt(D)) / denom, null) sol_1,
Ê iif (D > 0, (-b + sqrt(D)) / denom, null) sol_2
Ê from
Ê (select b, b*b - 4*a*c, 2*a from coeffs) (b, D, denom)

If we want to show the coefficients next to the solutions (which may not be a bad idea), we can alter
the query like this:

select
Ê a, b, c,
Ê iif (D >= 0, (-b - sqrt(D)) / denom, null) sol_1,
Ê iif (D > 0, (-b + sqrt(D)) / denom, null) sol_2
Ê from
Ê (select a, b, c, b*b - 4*a*c as D, 2*a as denom
Ê from coeffs)

Notice that whereas the first query used a column aliases list for the derived table, the second adds
aliases internally where needed. Both methods work, as long as every column is guaranteed to have
a name.

Selecting FROM a CTE

A common table expression or CTE is a more complex variant of the derived table, but it is also
more powerful. A preamble, starting with the keyword WITH, defines one or more named CTE's, each
with an optional column aliases list. The main query, which follows the preamble, can then access
these CTE's as if they were regular tables or views. The CTE's go out of scope once the main query
has run to completion.

For a full discussion of CTE's, please refer to the section Common Table Expressions (WITH É AS É
SELECT).

Chapter 6. Data Manipulation (DML) Statements

204

The following is a rewrite of our derived table example as a CTE:

with vars (b, D, denom) as (
Ê select b, b*b - 4*a*c, 2*a from coeffs
)
select
Ê iif (D >= 0, (-b - sqrt(D)) / denom, null) sol_1,
Ê iif (D > 0, (-b + sqrt(D)) / denom, null) sol_2
from vars

Except for the fact that the calculations that have to be made first are now at the beginning, this
isnÕt a great improvement over the derived table version. But we can now also eliminate the double
calculation of sqrt(D) for every row:

with vars (b, D, denom) as (
Ê select b, b*b - 4*a*c, 2*a from coeffs
),
vars2 (b, D, denom, sqrtD) as (
Ê select b, D, denom, iif (D >= 0, sqrt(D), null) from vars
)
select
Ê iif (D >= 0, (-b - sqrtD) / denom, null) sol_1,
Ê iif (D > 0, (-b + sqrtD) / denom, null) sol_2
from vars2

The code is a little more complicated now, but it might execute more efficiently (depending on what
takes more time: executing the SQRT function or passing the values of b, D and denom through an
extra CTE). Incidentally, we could have done the same with derived tables, but that would involve
nesting.

See also

Common Table Expressions (WITH É AS É SELECT) .

6.1.4. Joins

Joins combine data from two sources into a single set. This is done on a row-by-row basis and
usually involves checking a join condition in order to determine which rows should be merged and
appear in the resulting dataset. There are several types (INNER, OUTER) and classes (qualified, natural,
etc.) of joins, each with its own syntax and rules.

Since joins can be chained, the datasets involved in a join may themselves be joined sets.

Chapter 6. Data Manipulation (DML) Statements

205

Syntax

SELECT
Ê ...
Ê FROM <source>
Ê [<joins>]
Ê [...]

<source> ::=
Ê { table
Ê | view
Ê | selectable-stored-procedure [(<args>)]
Ê | <derived-table>
Ê | <common-table-expression>
Ê } [[AS] alias]

<joins> ::= <join> [<join> ...]

<join> ::=
Ê [<join-type>] JOIN <source> <join-condition>
Ê | NATURAL [<join-type>] JOIN <source>
Ê | {CROSS JOIN | ,} <source>

<join-type> ::= INNER | {LEFT | RIGHT | FULL} [OUTER]

<join-condition> ::= ON <condition> | USING (<column-list>)

Table 65. Arguments for JOIN Clauses

Argument Description

table Name of a table

view name of a view

selectable-stored-
procedure

Name of a selectable stored procedure

args Selectable stored procedure input parameter[s]

derived-table Reference, by name, to a derived table

common-table-
expression

Reference, by name, to a common table expression (CTE)

alias An alias for a data source (table, view, procedure, CTE, derived table)

condition Join condition (criterion)

column-list The list of columns used for an equi-join

Inner vs. outer joins

A join always combines data rows from two sets (usually referred to as the left set and the right set).
By default, only rows that meet the join condition (i.e., that match at least one row in the other set

Chapter 6. Data Manipulation (DML) Statements

206

when the join condition is applied) make it into the result set. This default type of join is called an
inner join . Suppose we have the following two tables:

Table A

ID S

87 Just some text

235 Silence

Table B

COD
E

X

-23 56.7735

87 416.0

If we join these tables like this:

select *
Ê from A
Ê join B on A.id = B.code;

then the result set will be:

ID S COD
E

X

87 Just some text 87 416.0

The first row of A has been joined with the second row of B because together they met the condition
ÒA.id = B.code Ó. The other rows from the source tables have no match in the opposite set and are
therefore not included in the join. Remember, this is an INNER join. We can make that fact explicit by
writing:

select *
Ê from A
Ê inner join B on A.id = B.code;

However, since INNER is the default, this is rarely done.

It is perfectly possible that a row in the left set matches several rows from the right set or vice
versa. In that case, all those combinations are included, and we can get results like:

ID S COD
E

X

87 Just some text 87 416.0

Chapter 6. Data Manipulation (DML) Statements

207

ID S COD
E

X

87 Just some text 87 -1.0

-23 DonÕt know -23 56.7735

-23 Still donÕt know -23 56.7735

-23 I give up -23 56.7735

Sometimes we want (or need) all the rows of one or both of the sources to appear in the joined set,
regardless of whether they match a record in the other source. This is where outer joins come in. A
LEFT outer join includes all the records from the left set, but only matching records from the right
set. In a RIGHT outer join itÕs the other way around. FULL outer joins include all the records from both
sets. In all outer joins, the ÒholesÓ (the places where an included source record doesnÕt have a
match in the other set) are filled up with NULLs.

In order to make an outer join, you must specify LEFT, RIGHT or FULL, optionally followed by the
keyword OUTER.

Below are the results of the various outer joins when applied to our original tables A and B:

select *
Ê from A
Ê left [outer] join B on A.id = B.code;

ID S CODE X

87 Just some text 87 416.0

235 Silence <null> <null>

select *
Ê from A
Ê right [outer] join B on A.id = B.code

ID S COD
E

X

<null> <null> -23 56.7735

87 Just some text 87 416.0

select *
Ê from A
Ê full [outer] join B on A.id = B.code

Chapter 6. Data Manipulation (DML) Statements

208

ID S CODE X

<null> <null> -23 56.7735

87 Just some text 87 416.0

235 Silence <null> <null>

Qualified joins

Qualified joins specify conditions for the combining of rows. This happens either explicitly in an ON
clause or implicitly in a USING clause.

Syntax

<qualified-join> ::= [<join-type>] JOIN <source> <join-condition>

<join-type> ::= INNER | {LEFT | RIGHT | FULL} [OUTER]

<join-condition> ::= ON <condition> | USING (<column-list>)

Explicit-condition joins

Most qualified joins have an ON clause, with an explicit condition that can be any valid boolean
expression but usually involves some comparison between the two sources involved.

Quite often, the condition is an equality test (or a number of ANDed equality tests) using the Ò =Ó
operator. Joins like these are called equi-joins . (The examples in the section on inner and outer joins
were al equi-joins.)

Examples of joins with an explicit condition:

/* Select all Detroit customers who made a purchase
Ê in 2013, along with the purchase details: */
select * from customers c
Ê join sales s on s.cust_id = c.id
Ê where c.city = 'Detroit' and s.year = 2013;

/* Same as above, but include non-buying customers: */
select * from customers c
Ê left join sales s on s.cust_id = c.id
Ê where c.city = 'Detroit' and s.year = 2013;

/* For each man, select the women who are taller than he.
Ê Men for whom no such woman exists are not included. */
select m.fullname as man, f.fullname as woman
Ê from males m
Ê join females f on f.height > m.height;

Chapter 6. Data Manipulation (DML) Statements

209

/* Select all pupils with their class and mentor.
Ê Pupils without a mentor are also included.
Ê Pupils without a class are not included. */
select p.firstname, p.middlename, p.lastname,
Ê c.name, m.name
Ê from pupils p
Ê join classes c on c.id = p.class
Ê left join mentors m on m.id = p.mentor;

Named columns joins

Equi-joins often compare columns that have the same name in both tables. If this is the case, we can
also use the second type of qualified join: the named columns join .

! Named columns joins are not supported in Dialect 1 databases.

Named columns joins have a USING clause which states just the column names. So instead of this:

select * from flotsam f
Ê join jetsam j
Ê on f.sea = j.sea
Ê and f.ship = j.ship;

we can also write:

select * from flotsam
Ê join jetsam using (sea, ship)

which is considerably shorter. The result set is a little different though!Ñ!at least when using
ÒSELECT *Ó:

¥ The explicit-condition join!Ñ!with the ON clause!Ñ!will contain each of the columns SEA and SHIP
twice: once from table FLOTSAM, and once from table JETSAM. Obviously, they will have the same
values.

¥ The named columns join!Ñ!with the USING clause!Ñ!will contain these columns only once.

If you want all the columns in the result set of the named columns join, set up your query like this:

select f.*, j.*
Ê from flotsam f
Ê join jetsam j using (sea, ship);

This will give you the exact same result set as the explicit-condition join.

For an OUTER named columns join, thereÕs an additional twist when using Ò SELECT *Ó or an

Chapter 6. Data Manipulation (DML) Statements

210

unqualified column name from the USING list:

If a row from one source set doesnÕt have a match in the other but must still be included because of
the LEFT, RIGHT or FULL directive, the merged column in the joined set gets the non- NULL value. That is
fair enough, but now you canÕt tell whether this value came from the left set, the right set, or both.
This can be especially deceiving when the value came from the right hand set, because Ò *Ó always
shows combined columns in the left hand part!Ñ!even in the case of a RIGHT join.

Whether this is a problem or not depends on the situation. If it is, use the Ò a.*, b.* Ó approach
shown above, with a and b the names or aliases of the two sources. Or better yet, avoid Ò *Ó
altogether in your serious queries and qualify all column names in joined sets. This has the
additional benefit that it forces you to think about which data you want to retrieve and where from.

It is your responsibility to make sure that the column names in the USING list are of compatible types
between the two sources. If the types are compatible but not equal, the engine converts them to the
type with the broadest range of values before comparing the values. This will also be the data type
of the merged column that shows up in the result set if Ò SELECT *Ó or the unqualified column name
is used. Qualified columns on the other hand will always retain their original data type.

Natural joins

Taking the idea of the named columns join a step further, a natural join performs an automatic
equi-join on all the columns that have the same name in the left and right table. The data types of
these columns must be compatible.

! Natural joins are not supported in Dialect 1 databases.

Syntax

<natural-join> ::= NATURAL [<join-type>] JOIN <source>

<join-type> ::= INNER | {LEFT | RIGHT | FULL} [OUTER]

Given these two tables:

create table TA (
Ê a bigint,
Ê s varchar(12),
Ê ins_date date
);

create table TB (
Ê a bigint,
Ê descr varchar(12),
Ê x float,
Ê ins_date date
);

Chapter 6. Data Manipulation (DML) Statements

211

a natural join on TA and TB would involve the columns a and ins_date , and the following two
statements would have the same effect:

select * from TA
Ê natural join TB;

select * from TA
Ê join TB using (a, ins_date);

Like all joins, natural joins are inner joins by default, but you can turn them into outer joins by
specifying LEFT, RIGHT or FULL before the JOIN keyword.

Caution: if there are no columns with the same name in the two source relations, a CROSS JOIN is
performed. WeÕll get to this type of join in a minute.

A Note on Equality

" This note about equality and inequality operators applies everywhere in FirebirdÕs
SQL language, not just in JOIN conditions.

The Ò=Ó operator, which is explicitly used in many conditional joins and implicitly in named column
joins and natural joins, only matches values to values. According to the SQL standard, NULL is not a
value and hence two NULLs are neither equal nor unequal to one another. If you need NULLs to match
each other in a join, use the IS NOT DISTINCT FROM operator. This operator returns true if the
operands have the same value or if they are both NULL.

select *
Ê from A join B
Ê on A.id is not distinct from B.code;

Likewise, in the!Ñ!extremely rare!Ñ!cases where you want to join on inequality, use IS DISTINCT
FROM, not Ò<>Ó, if you want NULL to be considered different from any value and two NULLs considered
equal:

select *
Ê from A join B
Ê on A.id is distinct from B.code;

Cross joins

A cross join produces the full set product of the two data sources. This means that it successfully
matches every row in the left source to every row in the right source.

Chapter 6. Data Manipulation (DML) Statements

212

Syntax

<cross-join> ::= {CROSS JOIN | ,} <source>

Please notice that the comma syntax is deprecated! It is only supported to keep legacy code working
and may disappear in some future version.

Cross-joining two sets is equivalent to joining them on a tautology (a condition that is always true).
The following two statements have the same effect:

select * from TA
Ê cross join TB;

select * from TA
Ê join TB on 1 = 1;

Cross joins are inner joins, because they only include matching records Ð it just so happens that
every record matches! An outer cross join, if it existed, wouldnÕt add anything to the result, because
what outer joins add are non-matching records, and these donÕt exist in cross joins.

Cross joins are seldom useful, except if you want to list all the possible combinations of two or more
variables. Suppose you are selling a product that comes in different sizes, different colors and
different materials. If these variables are each listed in a table of their own, this query would
return all the combinations:

select m.name, s.size, c.name
Ê from materials m
Ê cross join sizes s
Ê cross join colors c;

Ambiguous field names in joins

Firebird rejects unqualified field names in a query if these field names exist in more than one
dataset involved in a join. This is even true for inner equi-joins where the field name figures in the
ON clause like this:

select a, b, c
Ê from TA
Ê join TB on TA.a = TB.a;

There is one exception to this rule: with named columns joins and natural joins, the unqualified
field name of a column taking part in the matching process may be used legally and refers to the
merged column of the same name. For named columns joins, these are the columns listed in the
USING clause. For natural joins, they are the columns that have the same name in both relations. But
please notice again that, especially in outer joins, plain colname isnÕt always the same as

Chapter 6. Data Manipulation (DML) Statements

213

left.colname or right.colname . Types may differ, and one of the qualified columns may be NULL
while the other isnÕt. In that case, the value in the merged, unqualified column may mask the fact
that one of the source values is absent.

Joins with stored procedures

If a join is performed with a stored procedure that is not correlated with other data streams via
input parameters, there are no oddities. If correlation is involved, an unpleasant quirk reveals
itself. The problem is that the optimizer denies itself any way to determine the interrelationships of
the input parameters of the procedure from the fields in the other streams:

SELECT *
FROM MY_TAB
JOIN MY_PROC(MY_TAB.F) ON 1 = 1;

Here, the procedure will be executed before a single record has been retrieved from the table,
MY_TAB. The isc_no_cur_rec error error (no current record for fetch operation) is raised, interrupting
the execution.

The solution is to use syntax that specifies the join order explicitly :

SELECT *
FROM MY_TAB
LEFT JOIN MY_PROC(MY_TAB.F) ON 1 = 1;

This forces the table to be read before the procedure and everything works correctly.

! This quirk has been recognised as a bug in the optimizer and will be fixed in the
next version of Firebird.

6.1.5. The WHERE clause

The WHERE clause serves to limit the rows returned to the ones that the caller is interested in. The
condition following the keyword WHERE can be as simple as a check like Ò AMOUNT = 3Ó or it can be a
multilayered, convoluted expression containing subselects, predicates, function calls, mathematical
and logical operators, context variables and more.

The condition in the WHERE clause is often called the search condition , the search expression or
simply the search .

In DSQL and ESQL, the search expression may contain parameters. This is useful if a query has to
be repeated a number of times with different input values. In the SQL string as it is passed to the
server, question marks are used as placeholders for the parameters. They are called positional
parameters because they can only be told apart by their position in the string. Connectivity libraries
often support named parameters of the form :id , :amount, :a etc. These are more user-friendly; the
library takes care of translating the named parameters to positional parameters before passing the
statement to the server.

Chapter 6. Data Manipulation (DML) Statements

214

The search condition may also contain local (PSQL) or host (ESQL) variable names, preceded by a
colon.

Syntax

SELECT ...
Ê FROM ...
Ê [...]
Ê WHERE <search-condition>
Ê [...]

<search-condition> ::=
Ê a boolean expression returning
Ê TRUE, FALSE or possibly UNKNOWN (NULL)

Only those rows for which the search condition evaluates to TRUE are included in the result set. Be
careful with possible NULL outcomes: if you negate a NULL expression with NOT, the result will still be
NULL and the row will not pass. This is demonstrated in one of the examples below.

Examples

select genus, species from mammals
Ê where family = 'Felidae'
Ê order by genus;

select * from persons
Ê where birthyear in (1880, 1881)
Ê or birthyear between 1891 and 1898;

select name, street, borough, phone
Ê from schools s
Ê where exists (select * from pupils p where p.school = s.id)
Ê order by borough, street;

select * from employees
Ê where salary >= 10000 and position <> 'Manager';

select name from wrestlers
Ê where region = 'Europe'
Ê and weight > all (select weight from shot_putters
Ê where region = 'Africa');

Chapter 6. Data Manipulation (DML) Statements

215

select id, name from players
Ê where team_id = (select id from teams where name = 'Buffaloes');

select sum (population) from towns
Ê where name like '%dam'
Ê and province containing 'land';

select password from usertable
Ê where username = current_user;

The following example shows what can happen if the search condition evaluates to NULL.

Suppose you have a table listing some childrenÕs names and the number of marbles they possess. At
a certain moment, the table contains these data:

CHILD MARBLE
S

Anita 23

Bob E. 12

Chris <null>

Deirdre 1

Eve 17

Fritz 0

Gerry 21

Hadassah <null>

Isaac 6

First, please notice the difference between NULL and 0: Fritz is known to have no marbles at all,
ChrisÕs and HadassahÕs marble counts are unknown.

Now, if you issue this SQL statement:

select list(child) from marbletable where marbles > 10;

you will get the names Anita, Bob E., Eve and Gerry. These children all have more than 10 marbles.

If you negate the expression:

select list(child) from marbletable where not marbles > 10

Chapter 6. Data Manipulation (DML) Statements

216

itÕs the turn of Deirdre, Fritz and Isaac to fill the list. Chris and Hadassah are not included, because
they arenÕt known to have ten marbles or less. Should you change that last query to:

select list(child) from marbletable where marbles <= 10;

the result will still be the same, because the expression NULL <= 10 yields UNKNOWN. This is not the
same as TRUE, so Chris and Hadassah are not listed. If you want them listed with the ÒpoorÓ children,
change the query to:

select list(child) from marbletable
where marbles <= 10 or marbles is null;

Now the search condition becomes true for Chris and Hadassah, because Ò marbles is null Ó
obviously returns TRUE in their case. In fact, the search condition cannot be NULL for anybody now.

Lastly, two examples of SELECT queries with parameters in the search. It depends on the application
how you should define query parameters and even if it is possible at all. Notice that queries like
these cannot be executed immediately: they have to be prepared first. Once a parameterized query
has been prepared, the user (or calling code) can supply values for the parameters and have it
executed many times, entering new values before every call. How the values are entered and the
execution started is up to the application. In a GUI environment, the user typically types the
parameter values in one or more text boxes and then clicks an ÒExecuteÓ, ÒRunÓ or ÒRefreshÓ
button.

select name, address, phone frome stores
Ê where city = ? and class = ?;

select * from pants
Ê where model = :model and size = :size and color = :col;

The last query cannot be passed directly to the engine; the application must convert it to the other
format first, mapping named parameters to positional parameters.

6.1.6. The GROUP BY clause

GROUP BY merges output rows that have the same combination of values in its item list into a single
row. Aggregate functions in the select list are applied to each group individually instead of to the
dataset as a whole.

If the select list only contains aggregate columns or, more generally, columns whose values donÕt
depend on individual rows in the underlying set, GROUP BY is optional. When omitted, the final
result set of will consist of a single row (provided that at least one aggregated column is present).

If the select list contains both aggregate columns and columns whose values may vary per row, the
GROUP BY clause becomes mandatory.

Chapter 6. Data Manipulation (DML) Statements

217

Syntax

SELECT ... FROM ...
Ê GROUP BY <grouping-item> [, <grouping-item> ...]
Ê [HAVING <grouped-row-condition>]
Ê ...

<grouping-item> ::=
Ê <non-aggr-select-item>
Ê | <non-aggr-expression>

<non-aggr-select-item> ::=
Ê column-copy
Ê | column-alias
Ê | column-position

Table 66. Arguments for the GROUP BY Clause

Argument Description

non-aggr-expression Any non-aggregating expression that is not included in the SELECT list, i.e.
unselected columns from the source set or expressions that do not
depend on the data in the set at all

column-copy A literal copy, from the SELECT list, of an expression that contains no
aggregate function

column-alias The alias, from the SELECT list, of an expression (column) that contains no
aggregate function

column-position The position number, in the SELECT list, of an expression (column) that
contains no aggregate function

A general rule of thumb is that every non-aggregate item in the SELECT list must also be in the GROUP
BY list. You can do this in three ways:

1. By copying the item verbatim from the select list, e.g. Ò class Ó or Ò'D:' || upper(doccode) Ó.

2. By specifying the column alias, if it exists.

3. By specifying the column position as an integer literal between 1 and the number of columns.
Integer values resulting from expressions or parameter substitutions are simply invariables and
will be used as such in the grouping. They will have no effect though, as their value is the same
for each row.

!
If you group by a column position, the expression at that position is copied
internally from the select list. If it concerns a subquery, that subquery will be
executed again in the grouping phase. That is to say, grouping by the column
position, rather than duplicating the subquery expression in the grouping clause,
saves keystrokes and bytes, but it is not a way of saving processing cycles!

In addition to the required items, the grouping list may also contain:

Chapter 6. Data Manipulation (DML) Statements

218

¥ Columns from the source table that are not in the select list, or non-aggregate expressions based
on such columns. Adding such columns may further subdivide the groups. But since these
columns are not in the select list, you canÕt tell which aggregated row corresponds to which
value in the column. So, in general, if you are interested in this information, you also include
the column or expression in the select list!Ñ!which brings you back to the rule: Òevery non-
aggregate column in the select list must also be in the grouping listÓ.

¥ Expressions that arenÕt dependent on the data in the underlying set, e.g. constants, context
variables, single-value non-correlated subselects etc. This is only mentioned for completeness,
as adding such items is utterly pointless: they donÕt affect the grouping at all. ÒHarmless but
uselessÓ items like these may also figure in the select list without being copied to the grouping
list.

Examples

When the select list contains only aggregate columns, GROUP BY is not mandatory:

select count(*), avg(age) from students
Ê where sex = 'M';

This will return a single row listing the number of male students and their average age. Adding
expressions that donÕt depend on values in individual rows of table STUDENTS doesnÕt change that:

select count(*), avg(age), current_date from students
Ê where sex = 'M';

The row will now have an extra column showing the current date, but other than that, nothing
fundamental has changed. A GROUP BY clause is still not required.

However, in both the above examples it is allowed . This is perfectly valid:

select count(*), avg(age) from students
Ê where sex = 'M'
Ê group by class;

and will return a row for each class that has boys in it, listing the number of boys and their average
age in that particular class. (If you also leave the current_date field in, this value will be repeated on
every row, which is not very exciting.)

The above query has a major drawback though: it gives you information about the different classes,
but it doesnÕt tell you which row applies to which class. In order to get that extra bit of information,
the non-aggregate column CLASS must be added to the select list:

select class, count(*), avg(age) from students
Ê where sex = 'M'
Ê group by class;

Chapter 6. Data Manipulation (DML) Statements

219

Now we have a useful query. Notice that the addition of column CLASS also makes the GROUP BY
clause mandatory. We canÕt drop that clause anymore, unless we also remove CLASS from the
column list.

The output of our last query may look something like this:

CLAS
S

COUN
T

AV
G

2A 12 13.5

2B 9 13.9

3A 11 14.6

3B 12 14.4

É É É

The headings ÒCOUNTÓ and ÒAVGÓ are not very informative. In a simple case like this, you might get
away with that, but in general you should give aggregate columns a meaningful name by aliasing
them:

select class,
Ê count(*) as num_boys,
Ê avg(age) as boys_avg_age
Ê from students
Ê where sex = 'M'
Ê group by class;

As you may recall from the formal syntax of the columns list, the AS keyword is optional.

Adding more non-aggregate (or rather: row-dependent) columns requires adding them to the GROUP
BY clause too. For instance, you might want to see the above information for girls as well; and you
may also want to differentiate between boarding and day students:

select class,
Ê sex,
Ê boarding_type,
Ê count(*) as number,
Ê avg(age) as avg_age
Ê from students
Ê group by class, sex, boarding_type;

This may give you the following result:

CLAS
S

SE
X

BOARDING_TYP
E

NUMBE
R

AVG_AG
E

2A F BOARDING 9 13.3

Chapter 6. Data Manipulation (DML) Statements

220

CLAS
S

SE
X

BOARDING_TYP
E

NUMBE
R

AVG_AG
E

2A F DAY 6 13.5

2A M BOARDING 7 13.6

2A M DAY 5 13.4

2B F BOARDING 11 13.7

2B F DAY 5 13.7

2B M BOARDING 6 13.8

É É É É É

Each row in the result set corresponds to one particular combination of the variables class, sex and
boarding type. The aggregate results!Ñ!number and average age!Ñ!are given for each of these
rather specific groups individually. In a query like this, you donÕt see a total for boys as a whole, or
day students as a whole. ThatÕs the tradeoff: the more non-aggregate columns you add, the more
you can pinpoint very specific groups, but the more you also lose sight of the general picture. Of
course, you can still obtain the ÒcoarserÓ aggregates through separate queries.

HAVING

Just as a WHERE clause limits the rows in a dataset to those that meet the search condition, so the
HAVING subclause imposes restrictions on the aggregated rows in a grouped set. HAVING is optional,
and can only be used in conjunction with GROUP BY.

The condition(s) in the HAVING clause can refer to:

¥ Any aggregated column in the select list. This is the most widely used alternative.

¥ Any aggregated expression that is not in the select list, but allowed in the context of the query.
This is sometimes useful too.

¥ Any column in the GROUP BY list. While legal, it is more efficient to filter on these non-aggregated
data at an earlier stage: in the WHERE clause.

¥ Any expression whose value doesnÕt depend on the contents of the dataset (like a constant or a
context variable). This is valid but utterly pointless, because it will either suppress the entire set
or leave it untouched, based on conditions that have nothing to do with the set itself.

A HAVING clause can not contain:

¥ Non-aggregated column expressions that are not in the GROUP BY list.

¥ Column positions. An integer in the HAVING clause is just an integer.

¥ Column aliases Ð- not even if they appear in the GROUP BY clause!

Examples

Building on our earlier examples, this could be used to skip small groups of students:

Chapter 6. Data Manipulation (DML) Statements

221

select class,
Ê count(*) as num_boys,
Ê avg(age) as boys_avg_age
Ê from students
Ê where sex = 'M'
Ê group by class
Ê having count(*) >= 5;

To select only groups that have a minimum age spread:

select class,
Ê count(*) as num_boys,
Ê avg(age) as boys_avg_age
Ê from students
Ê where sex = 'M'
Ê group by class
Ê having max(age) - min(age) > 1.2;

Notice that if youÕre really interested in this information, youÕd normally include min(age) and
max(age) -Ð or the expression Òmax(age) - min(age) Ó Ð- in the select list as well!

To include only 3rd classes:

select class,
Ê count(*) as num_boys,
Ê avg(age) as boys_avg_age
Ê from students
Ê where sex = 'M'
Ê group by class
Ê having class starting with '3';

Better would be to move this condition to the WHERE clause:

select class,
Ê count(*) as num_boys,
Ê avg(age) as boys_avg_age
Ê from students
Ê where sex = 'M' and class starting with '3'
Ê group by class;

6.1.7. The PLAN clause

The PLAN clause enables the user to submit a data retrieval plan, thus overriding the plan that the
optimizer would have generated automatically.

Chapter 6. Data Manipulation (DML) Statements

222

Syntax

PLAN <plan-expr>

<plan-expr> ::=
Ê (<plan-item> [, <plan-item> ...])
Ê | <sorted-item>
Ê | <joined-item>
Ê | <merged-item>

<sorted-item> ::= SORT (<plan-item>)

<joined-item> ::=
Ê JOIN (<plan-item>, <plan-item> [, <plan-item> ...])

<merged-item> ::=
Ê [SORT] MERGE (<sorted-item>, <sorted-item> [, <sorted-item> ...])

<plan-item> ::= <basic-item> | <plan-expr>

<basic-item> ::=
Ê <relation> { NATURAL
Ê | INDEX (<indexlist>)
Ê | ORDER index [INDEX (<indexlist>)] }

<relation> ::= table | view [table]

<indexlist> ::= index [, index ...]

Table 67. Arguments for the PLAN Clause

Argument Description

table Table name or its alias

view View name

index Index name

Every time a user submits a query to the Firebird engine, the optimizer computes a data retrieval
strategy. Most Firebird clients can make this retrieval plan visible to the user. In FirebirdÕs own isql
utility, this is done with the command SET PLAN ON. If you are studying query plans rather than
running queries, SET PLANONLY ON will show the plan without executing the query.

In most situations, you can trust that Firebird will select the optimal query plan for you. However,
if you have complicated queries that seem to be underperforming, it may very well be worth your
while to examine the plan and see if you can improve on it.

Simple plans

The simplest plans consist of just a relation name followed by a retrieval method. For example, for
an unsorted single-table select without a WHERE clause:

Chapter 6. Data Manipulation (DML) Statements

223

select * from students
Ê plan (students natural);

If thereÕs a WHERE or a HAVING clause, you can specify the index to be used for finding matches:

select * from students
Ê where class = '3C'
Ê plan (students index (ix_stud_class));

The INDEX directive is also used for join conditions (to be discussed a little later). It can contain a list
of indexes, separated by commas.

ORDER specifies the index for sorting the set if an ORDER BY or GROUP BY clause is present:

select * from students
Ê plan (students order pk_students)
Ê order by id;

ORDER and INDEX can be combined:

select * from students
Ê where class >= '3'
Ê plan (students order pk_students index (ix_stud_class))
Ê order by id;

It is perfectly OK if ORDER and INDEX specify the same index:

select * from students
Ê where class >= '3'
Ê plan (students order ix_stud_class index (ix_stud_class))
Ê order by class;

For sorting sets when thereÕs no usable index available (or if you want to suppress its use), leave
out ORDER and prepend the plan expression with SORT:

select * from students
Ê plan sort (students natural)
Ê order by name;

Or when an index is used for the search:

Chapter 6. Data Manipulation (DML) Statements

224

select * from students
Ê where class >= '3'
Ê plan sort (students index (ix_stud_class))
Ê order by name;

Notice that SORT, unlike ORDER, is outside the parentheses. This reflects the fact that the data rows are
retrieved unordered and sorted afterwards by the engine.

When selecting from a view, specify the view and the table involved. For instance, if you have a
view FRESHMEN that selects just the first-year students:

select * from freshmen
Ê plan (freshmen students natural);

Or, for instance:

select * from freshmen
Ê where id > 10
Ê plan sort (freshmen students index (pk_students))
Ê order by name desc;

" If a table or view has been aliased, it is the alias, not the original name, that must
be used in the PLAN clause.

Composite plans

When a join is made, you can specify the index which is to be used for matching. You must also use
the JOIN directive on the two streams in the plan:

select s.id, s.name, s.class, c.mentor
Ê from students s
Ê join classes c on c.name = s.class
Ê plan join (s natural, c index (pk_classes));

The same join, sorted on an indexed column:

select s.id, s.name, s.class, c.mentor
Ê from students s
Ê join classes c on c.name = s.class
Ê plan join (s order pk_students, c index (pk_classes))
Ê order by s.id;

And on a non-indexed column:

Chapter 6. Data Manipulation (DML) Statements

225

select s.id, s.name, s.class, c.mentor
Ê from students s
Ê join classes c on c.name = s.class
Ê plan sort (join (s natural, c index (pk_classes)))
Ê order by s.name;

With a search added:

select s.id, s.name, s.class, c.mentor
Ê from students s
Ê join classes c on c.name = s.class
Ê where s.class <= '2'
Ê plan sort (join (s index (fk_student_class), c index (pk_classes)))
Ê order by s.name;

As a left outer join:

select s.id, s.name, s.class, c.mentor
Ê from classes c
Ê left join students s on c.name = s.class
Ê where s.class <= '2'
Ê plan sort (join (c natural, s index (fk_student_class)))
Ê order by s.name;

If there is no index available to match the join criteria (or if you donÕt want to use it), the plan must
first sort both streams on their join column(s) and then merge them. This is achieved with the SORT
directive (which weÕve already met) and MERGE instead of JOIN:

select * from students s
Ê join classes c on c.cookie = s.cookie
Ê plan merge (sort (c natural), sort (s natural));

Adding an ORDER BY clause means the result of the merge must also be sorted:

select * from students s
Ê join classes c on c.cookie = s.cookie
Ê plan sort (merge (sort (c natural), sort (s natural)))
Ê order by c.name, s.id;

Finally, we add a search condition on two indexable colums of table STUDENTS:

Chapter 6. Data Manipulation (DML) Statements

226

select * from students s
Ê join classes c on c.cookie = s.cookie
Ê where s.id < 10 and s.class <= '2'
Ê plan sort (merge (sort (c natural),
Ê sort (s index (pk_students, fk_student_class))))
Ê order by c.name, s.id;

As follows from the formal syntax definition, JOINs and MERGEs in the plan may combine more than
two streams. Also, every plan expression may be used as a plan item in an encompassing plan. This
means that plans of certain complicated queries may have various nesting levels.

Finally, instead of MERGE you may also write SORT MERGE. As this makes absolutely no difference and
may create confusion with ÒrealÓ SORT directives (the ones that do make a difference), itÕs probably
best to stick to plain MERGE.

$

Occasionally, the optimizer will accept a plan and then not follow it, even though it
does not reject it as invalid. One such example was

MERGE (unsorted stream, unsorted stream)

It is advisable to treat such as plan as ÒdeprecatedÓ.

6.1.8. UNION

A UNION concatenates two or more datasets, thus increasing the number of rows but not the number
of columns. Datasets taking part in a UNION must have the same number of columns, and columns at
corresponding positions must be of the same type. Other than that, they may be totally unrelated.

By default, a union suppresses duplicate rows. UNION ALL shows all rows, including any duplicates.
The optional DISTINCT keyword makes the default behaviour explicit.

Chapter 6. Data Manipulation (DML) Statements

227

Syntax

<union> ::=
Ê <individual-select>
Ê UNION [DISTINCT | ALL]
Ê <individual-select>
Ê [
Ê [UNION [DISTINCT | ALL]
Ê <individual-select>
Ê ...
Ê]
Ê [<union-wide-clauses>]

<individual-select> ::=
Ê SELECT
Ê [TRANSACTION name]
Ê [FIRST m] [SKIP n]
Ê [DISTINCT | ALL] <columns>
Ê [INTO <host-varlist>]
Ê FROM <source> [[AS] alias]
Ê [<joins>]
Ê [WHERE <condition>]
Ê [GROUP BY <grouping-list>
Ê [HAVING <aggregate-condition>]]
Ê [PLAN <plan-expr>]

<union-wide-clauses> ::=
Ê [ORDER BY <ordering-list>]
Ê [ROWS m [TO n]]
Ê [FOR UPDATE [OF <columns>]]
Ê [WITH LOCK]
Ê [INTO <PSQL-varlist>]

Unions take their column names from the first select query. If you want to alias union columns, do
so in the column list of the topmost SELECT. Aliases in other participating selects are allowed and
may even be useful, but will not propagate to the union level.

If a union has an ORDER BY clause, the only allowed sort items are integer literals indicating 1-based
column positions, optionally followed by an ASC/DESC and/or a NULLS {FIRST | LAST} directive. This
also implies that you cannot order a union by anything that isnÕt a column in the union. (You can,
however, wrap it in a derived table, which gives you back all the usual sort options.)

Unions are allowed in subqueries of any kind and can themselves contain subqueries. They can
also contain joins, and can take part in a join when wrapped in a derived table.

Examples

This query presents information from different music collections in one dataset using unions:

Chapter 6. Data Manipulation (DML) Statements

228

select id, title, artist, length, 'CD' as medium
Ê from cds
union
select id, title, artist, length, 'LP'
Ê from records
union
select id, title, artist, length, 'MC'
Ê from cassettes
order by 3, 2 -- artist, title;

If id , title , artist and length are the only fields in the tables involved, the query can also be
written as:

select c.*, 'CD' as medium
Ê from cds c
union
select r.*, 'LP'
Ê from records r
union
select c.*, 'MC'
Ê from cassettes c
order by 3, 2 -- artist, title;

Qualifying the ÒstarsÓ is necessary here because they are not the only item in the column list. Notice
how the ÒcÓ aliases in the first and third select do not conflict with each other: their scopes are not
union-wide but apply only to their respective select queries.

The next query retrieves names and phone numbers from translators and proofreaders.
Translators who also work as proofreaders will show up only once in the result set, provided their
phone number is the same in both tables. The same result can be obtained without DISTINCT. With
ALL, these people would appear twice.

select name, phone from translators
Ê union distinct
select name, telephone from proofreaders;

A UNION within a subquery:

select name, phone, hourly_rate from clowns
where hourly_rate < all
Ê (select hourly_rate from jugglers
Ê union
Ê select hourly_rate from acrobats)
order by hourly_rate;

Chapter 6. Data Manipulation (DML) Statements

229

6.1.9. ORDER BY

When a SELECT statement is executed, the result set is not sorted in any way. It often happens that
rows appear to be sorted chronologically, simply because they are returned in the same order they
were added to the table by INSERT statements. To specify a sorting order for the set specification, an
ORDER BY clause is used.

Syntax

SELECT ... FROM ...
...
ORDER BY <ordering-item> [, <ordering-item> É]

<ordering-item> ::=
Ê { col-name | col-alias | col-position | <expression>}
Ê [COLLATE collation-name]
Ê [ASC[ENDING] | DESC[ENDING]]
Ê [NULLS {FIRST|LAST}]

Table 68. Arguments for the ORDER BY Clause

Argument Description

col-name Full column name

col-alias Column alias

col-position Column position in the SELECT list

expression Any expression

collation-name Collation name (sorting order for string types)

Description

The ORDER BY consists of a comma-separated list of the columns on which the result data set should
be sorted. The sort order can be specified by the name of the column!Ñ!but only if the column was
not previously aliased in the SELECT columns list. The alias must be used if it was used there. The
ordinal position number of the column in the SELECT column list, the alias given to the column in
the SELECT list with the help of the AS keyword, or the number of the column in the SELECT list can be
used without restriction.

The three forms of expressing the columns for the sort order can be mixed in the same ORDER BY
clause. For instance, one column in the list can be specified by its name and another column can be
specified by its number.

!
If you use the column position to specify the sort order for a query of the SELECT *
style, the server expands the asterisk to the full column list in order to determine
the columns for the sort. It is, however, considered Òsloppy practiceÓ to design
ordered sets this way.

Chapter 6. Data Manipulation (DML) Statements

230

Sorting Direction

The keyword ASCENDING, usually abbreviated to ASC, specifies a sort direction from lowest to highest.
ASCENDING is the default sort direction.

The keyword DESCENDING, usually abbreviated to DESC, specifies a sort direction from highest to
lowest.

Specifying ascending order for one column and the descending order for another is allowed.

Collation Order

The keyword COLLATE specifies the collation order for a string column if you need a collation that is
different from the normal one for this column. The normal collation order will be either the default
one for the database character set or one that has been set explicitly in the columnÕs definition.

NULLs Position

The keyword NULLS defines where NULL in the associated column will fall in the sort order: NULLS
FIRST places the rows with the NULL column above rows ordered by that columnÕs value; NULLS LAST
places those rows after the ordered rows.

NULLS FIRST is the default.

Ordering UNION-ed Sets

The discrete queries contributing to a UNION cannot take an ORDER BY clause. The only option is to
order the entire output, using one ORDER BY clause at the end of the overall query.

The simplest!Ñ!and, in some cases, the only!Ñ!method for specifying the sort order is by the ordinal
column position. However, it is also valid to use the column names or aliases, from the first
contributing query only .

The ASC/DESC and/or NULLS directives are available for this global set.

If discrete ordering within the contributing set is required, use of derived tables or common table
expressions for those sets may be a solution.

Examples of ORDER BY

Sorting the result set in ascending order, ordering by the RDB$CHARACTER_SET_ID, RDB$COLLATION_ID
columns of the RDB$COLLATIONS table:

SELECT
Ê RDB$CHARACTER_SET_ID AS CHARSET_ID,
Ê RDB$COLLATION_ID AS COLL_ID,
Ê RDB$COLLATION_NAME AS NAME
FROM RDB$COLLATIONS
ORDER BY RDB$CHARACTER_SET_ID, RDB$COLLATION_ID;

Chapter 6. Data Manipulation (DML) Statements

231

The same, but sorting by the column aliases:

SELECT
Ê RDB$CHARACTER_SET_ID AS CHARSET_ID,
Ê RDB$COLLATION_ID AS COLL_ID,
Ê RDB$COLLATION_NAME AS NAME
FROM RDB$COLLATIONS
ORDER BY CHARSET_ID, COLL_ID;

Sorting the output data by the column position numbers:

SELECT
Ê RDB$CHARACTER_SET_ID AS CHARSET_ID,
Ê RDB$COLLATION_ID AS COLL_ID,
Ê RDB$COLLATION_NAME AS NAME
FROM RDB$COLLATIONS
ORDER BY 1, 2;

Sorting a SELECT * query by position numbers!Ñ!possible, but nasty and not recommended:

SELECT *
FROM RDB$COLLATIONS
ORDER BY 3, 2;

Sorting by the second column in the BOOKS table:

SELECT
Ê BOOKS.*,
Ê FILMS.DIRECTOR
FROM BOOKS, FILMS
ORDER BY 2;

Sorting in descending order by the values of column PROCESS_TIME, with NULLs placed at the
beginning of the set:

SELECT *
FROM MSG
ORDER BY PROCESS_TIME DESC NULLS FIRST;

Sorting the set obtained by a UNION of two queries. Results are sorted in descending order for the
values in the second column, with NULLs at the end of the set; and in ascending order for the values
of the first column with NULLs at the beginning.

Chapter 6. Data Manipulation (DML) Statements

232

SELECT
Ê DOC_NUMBER, DOC_DATE
FROM PAYORDER
UNION ALL
SELECT
Ê DOC_NUMBER, DOC_DATE
FROM BUDGORDER
ORDER BY 2 DESC NULLS LAST, 1 ASC NULLS FIRST;

6.1.10. ROWS

Used for

Retrieving a slice of rows from an ordered set

Available in

DSQL, PSQL

Syntax

SELECT <columns> FROM ...
Ê [WHERE ...]
Ê [ORDER BY ...]
Ê ROWS m [TO n]

Table 69. Arguments for the ROWS Clause

Argument Description

m, n Any integer expressions

Description

Limits the amount of rows returned by the SELECT statement to a specified number or range.

The FIRST and SKIP clauses do the same job as ROWS, but neither are SQL-compliant. Unlike FIRST and
SKIP, the ROWS and TO clauses accept any type of integer expression as their arguments, without
parentheses. Of course, parentheses may still be needed for nested evaluations inside the
expression and a subquery must always be enclosed in parentheses.

"

¥ Numbering of rows in the intermediate set!Ñ!the overall set cached on disk
before the ÒsliceÓ is extracted!Ñ!starts at 1.

¥ Both FIRST/SKIP and ROWS can be used without the ORDER BY clause, although it
rarely makes sense to do so!Ñ!except perhaps when you want to take a quick
look at the table data and donÕt care that rows will be in random order. For this
purpose, a query like Ò SELECT * FROM TABLE1 ROWS 20Ó would return the first 20
rows instead of a whole table that might be rather big.

Calling ROWS m retrieves the first m records from the set specified.

Chapter 6. Data Manipulation (DML) Statements

233

Characteristics of using ROWS m without a TO clause:

¥ If m is greater than the total number of records in the intermediate data set, the entire set is
returned

¥ If m = 0, an empty set is returned

¥ If m < 0, the SELECT statement call fails with an error

Calling ROWS m TO n retrieves the rows from the set, starting at row m and ending after row n!Ñ!the
set is inclusive.

Characteristics of using ROWS m with a TO clause:

¥ If m is greater than the total number of rows in the intermediate set and n >= m, an empty set is
returned

¥ If m is not greater than n and n is greater than the total number of rows in the intermediate set,
the result set will be limited to rows starting from m, up to the end of the set

¥ If m < 1 and n < 1, the SELECT statement call fails with an error

¥ If n = m - 1, an empty set is returned

¥ If n < m - 1, the SELECT statement call fails with an error

Using a TO clause without a ROWS clause:

While ROWS replaces the FIRST and SKIP syntax, there is one situation where the ROWS syntax does not
provide the same behaviour: specifying SKIP n on its own returns the entire intermediate set,
without the first n rows. The ROWS É TO syntax needs a little help to achieve this.

With the ROWS syntax, you need a ROWS clause in association with the TO clause and deliberately make
the second (n) argument greater than the size of the intermediate data set. This is achieved by
creating an expression for n that uses a subquery to retrieve the count of rows in the intermediate
set and adds 1 to it.

Mixing ROWS and FIRST/SKIP

ROWS syntax cannot be mixed with FIRST/SKIP syntax in the same SELECT expression. Using the
different syntaxes in different subqueries in the same statement is allowed.

ROWS Syntax in UNION Queries

When ROWS is used in a UNION query, the ROWS directive is applied to the unioned set and must be
placed after the last SELECT statement.

If a need arises to limit the subsets returned by one or more SELECT statements inside UNION, there
are a couple of options:

1. Use FIRST/SKIP syntax in these SELECT statements!Ñ!bearing in mind that an ordering clause
(ORDER BY) cannot be applied locally to the discrete queries, but only to the combined output.

2. Convert the queries to derived tables with their own ROWS clauses.

Chapter 6. Data Manipulation (DML) Statements

234

Examples of ROWS

The following examples rewrite the examples used in the section about FIRST and SKIP, earlier in
this chapter .

Retrieve the first ten names from the output of a sorted query on the PEOPLE table:

SELECT id, name
FROM People
ORDER BY name ASC
ROWS 1 TO 10;

or its equivalent

SELECT id, name
FROM People
ORDER BY name ASC
ROWS 10;

Return all records from the PEOPLE table except for the first 10 names:

SELECT id, name
FROM People
ORDER BY name ASC
ROWS 11 TO (SELECT COUNT(*) FROM People);

And this query will return the last 10 records (pay attention to the parentheses):

SELECT id, name
FROM People
ORDER BY name ASC
ROWS (SELECT COUNT(*) - 9 FROM People)
TO (SELECT COUNT(*) FROM People);

This one will return rows 81-100 from the PEOPLE table:

SELECT id, name
FROM People
ORDER BY name ASC
ROWS 81 TO 100;

! ROWS can also be used with the UPDATE and DELETE statements.

Chapter 6. Data Manipulation (DML) Statements

235

6.1.11. FOR UPDATE [OF]

Syntax

SELECT ... FROM single_table
Ê [WHERE ...]
Ê [FOR UPDATE [OF ...]]

FOR UPDATE does not do what it suggests. Its only effect currently is to disable the pre-fetch buffer.

!
It is likely to change in future: the plan is to validate cursors marked with FOR
UPDATE if they are truly updateable and reject positioned updates and deletes for
cursors evaluated as non-updateable.

The OF sub-clause does not do anything at all.

6.1.12. WITH LOCK

Available in

DSQL, PSQL

Used for

Limited pessimistic locking

Description:

WITH LOCK provides a limited explicit pessimistic locking capability for cautious use in conditions
where the affected row set is:

a. extremely small (ideally, a singleton), and

b. precisely controlled by the application code.

#

This is for experts only!

The need for a pessimistic lock in Firebird is very rare indeed and should be well
understood before use of this extension is considered.

It is essential to understand the effects of transaction isolation and other
transaction attributes before attempting to implement explicit locking in your
application.

Syntax

SELECT ... FROM single_table
Ê [WHERE ...]
Ê [FOR UPDATE [OF ...]]
Ê WITH LOCK

If the WITH LOCK clause succeeds, it will secure a lock on the selected rows and prevent any other

Chapter 6. Data Manipulation (DML) Statements

236

transaction from obtaining write access to any of those rows, or their dependants, until your
transaction ends.

WITH LOCK can only be used with a top-level, single-table SELECT statement. It is not available:

¥ in a subquery specification

¥ for joined sets

¥ with the DISTINCT operator, a GROUP BY clause or any other aggregating operation

¥ with a view

¥ with the output of a selectable stored procedure

¥ with an external table

¥ with a UNION query

As the engine considers, in turn, each record falling under an explicit lock statement, it returns
either the record version that is the most currently committed, regardless of database state when
the statement was submitted, or an exception.

Wait behaviour and conflict reporting depend on the transaction parameters specified in the TPB
block:

Table 70. How TPB settings affect explicit locking

TPB mode Behaviour

isc_tpb_consistency Explicit locks are overridden by implicit or explicit table-level locks and
are ignored.

isc_tpb_concurrency +
isc_tpb_nowait

If a record is modified by any transaction that was committed since the
transaction attempting to get explicit lock started, or an active transaction
has performed a modification of this record, an update conflict exception
is raised immediately.

isc_tpb_concurrency +
isc_tpb_wait

If the record is modified by any transaction that has committed since the
transaction attempting to get explicit lock started, an update conflict
exception is raised immediately.

If an active transaction is holding ownership on this record (via explicit
locking or by a normal optimistic write-lock) the transaction attempting
the explicit lock waits for the outcome of the blocking transaction and,
when it finishes, attempts to get the lock on the record again. This means
that, if the blocking transaction committed a modified version of this
record, an update conflict exception will be raised.

isc_tpb_read_committe
d + isc_tpb_nowait

If there is an active transaction holding ownership on this record (via
explicit locking or normal update), an update conflict exception is raised
immediately.

Chapter 6. Data Manipulation (DML) Statements

237

TPB mode Behaviour

isc_tpb_read_committe
d + isc_tpb_wait

If there is an active transaction holding ownership on this record (via
explicit locking or by a normal optimistic write-lock), the transaction
attempting the explicit lock waits for the outcome of blocking transaction
and when it finishes, attempts to get the lock on the record again.

Update conflict exceptions can never be raised by an explicit lock
statement in this TPB mode.

Usage with a FOR UPDATE Clause

If the FOR UPDATE sub-clause precedes the WITH LOCK sub-clause, buffered fetches are suppressed.
Thus, the lock will be applied to each row, one by one, at the moment it is fetched. It becomes
possible, then, that a lock which appeared to succeed when requested will nevertheless fail
subsequently , when an attempt is made to fetch a row which has become locked by another
transaction in the meantime.

!
As an alternative, it may be possible in your access components to set the size of
the fetch buffer to 1. This would enable you to process the currently-locked row
before the next is fetched and locked, or to handle errors without rolling back your
transaction.

! OF <column-names>

This optional sub-clause does nothing at all.

See also

FOR UPDATE [OF]

How the engine deals with WITH LOCK

When an UPDATE statement tries to access a record that is locked by another transaction, it either
raises an update conflict exception or waits for the locking transaction to finish, depending on TPB
mode. Engine behaviour here is the same as if this record had already been modified by the locking
transaction.

No special gdscodes are returned from conflicts involving pessimistic locks.

The engine guarantees that all records returned by an explicit lock statement are actually locked
and do meet the search conditions specified in WHERE clause, as long as the search conditions do not
depend on any other tables, via joins, subqueries, etc. It also guarantees that rows not meeting the
search conditions will not be locked by the statement. It can not guarantee that there are no rows
which, though meeting the search conditions, are not locked.

! This situation can arise if other, parallel transactions commit their changes during
the course of the locking statementÕs execution.

The engine locks rows at fetch time. This has important consequences if you lock several rows at

Chapter 6. Data Manipulation (DML) Statements

238

once. Many access methods for Firebird databases default to fetching output in packets of a few
hundred rows (Òbuffered fetchesÓ). Most data access components cannot bring you the rows
contained in the last-fetched packet, where an error occurred.

Caveats using WITH LOCK

¥ Rolling back of an implicit or explicit savepoint releases record locks that were taken under that
savepoint, but it doesnÕt notify waiting transactions. Applications should not depend on this
behaviour as it may get changed in the future.

¥ While explicit locks can be used to prevent and/or handle unusual update conflict errors, the
volume of deadlock errors will grow unless you design your locking strategy carefully and
control it rigorously.

¥ Most applications do not need explicit locks at all. The main purposes of explicit locks are:

1. to prevent expensive handling of update conflict errors in heavily loaded applications, and

2. to maintain integrity of objects mapped to a relational database in a clustered environment.

If your use of explicit locking doesnÕt fall in one of these two categories, then itÕs the wrong way
to do the task in Firebird.

¥ Explicit locking is an advanced feature; do not misuse it! While solutions for these kinds of
problems may be very important for web sites handling thousands of concurrent writers, or for
ERP/CRM systems operating in large corporations, most application programs do not need to
work in such conditions.

Examples using explicit locking

i. Simple:

SELECT * FROM DOCUMENT WHERE ID=? WITH LOCK;

ii. Multiple rows, one-by-one processing with DSQL cursor:

SELECT * FROM DOCUMENT WHERE PARENT_ID=?
Ê FOR UPDATE WITH LOCK;

6.1.13. INTO

Used for

Passing SELECT output into variables

Available in

PSQL

In PSQL code (triggers, stored procedures and executable blocks), the results of a SELECT statement
can be loaded row-by-row into local variables. It is often the only way to do anything with the

Chapter 6. Data Manipulation (DML) Statements

239

returned values at all. The number, order and types of the variables must match the columns in the
output row.

A ÒplainÓ SELECT statement can only be used in PSQL if it returns at most one row, i.e., if it is a
singleton select. For multi-row selects, PSQL provides the FOR SELECT loop construct, discussed later
in the PSQL chapter. PSQL also supports the DECLARE CURSOR statement, which binds a named cursor
to a SELECT statement. The cursor can then be used to walk the result set.

Syntax

In PSQL the INTO clause is placed at the very end of the SELECT statement.

SELECT [...] <column-list>
FROM ...
[...]
[INTO <variable-list>]

<variable-list> ::= [:] psqlvar [, [:] psqlvar ...]

! The colon prefix before local variable names in PSQL is optional in the INTO clause.

Examples

Selecting some aggregated values and passing them into previously declared variables min_amt,
avg_amt and max_amt:

select min(amount), avg(cast(amount as float)), max(amount)
Ê from orders
Ê where artno = 372218
Ê into min_amt, avg_amt, max_amt;

!
The CAST serves to make the average a real number; otherwise, since amount is
presumably an integer field, SQL rules would truncate it to the nearest lower
integer.

A PSQL trigger that retrieves two values as a BLOB field (using the LIST() function) and assigns it
INTO a third field:

select list(name, ', ')
Ê from persons p
Ê where p.id in (new.father, new.mother)
Ê into new.parentnames;

Chapter 6. Data Manipulation (DML) Statements

240

6.1.14. Common Table Expressions (Ò WITH É AS É SELECTÓ)

Available in

DSQL, PSQL

A common table expression or CTE can be described as a virtual table or view, defined in a
preamble to a main query, and going out of scope after the main queryÕs execution. The main query
can reference any CTEs defined in the preamble as if they were regular tables or views. CTEs can be
recursive, i.e. self-referencing, but they cannot be nested.

Syntax

<cte-construct> ::=
Ê <cte-defs>
Ê <main-query>

<cte-defs> ::= WITH [RECURSIVE] <cte> [, <cte> ...]

<cte> ::= name [(<column-list>)] AS (<cte-stmt>)

<column-list> ::= column-alias [, column-alias ...]

Table 71. Arguments for Common Table Expressions

Argument Description

cte-stmt Any SELECT statement, including UNION

main-query The main SELECT statement, which can refer to the CTEs defined in the
preamble

name Alias for a table expression

column-alias Alias for a column in a table expression

Chapter 6. Data Manipulation (DML) Statements

241

Example

with dept_year_budget as (
Ê select fiscal_year,
Ê dept_no,
Ê sum(projected_budget) as budget
Ê from proj_dept_budget
Ê group by fiscal_year, dept_no
)
select d.dept_no,
Ê d.department,
Ê dyb_2008.budget as budget_08,
Ê dyb_2009.budget as budget_09
from department d
Ê left join dept_year_budget dyb_2008
Ê on d.dept_no = dyb_2008.dept_no
Ê and dyb_2008.fiscal_year = 2008
Ê left join dept_year_budget dyb_2009
Ê on d.dept_no = dyb_2009.dept_no
Ê and dyb_2009.fiscal_year = 2009
where exists (
Ê select * from proj_dept_budget b
Ê where d.dept_no = b.dept_no
);

CTE Notes

¥ A CTE definition can contain any legal SELECT statement, as long as it doesnÕt have a ÒWITHÉÓ
preamble of its own (no nesting).

¥ CTEs defined for the same main query can reference each other, but care should be taken to
avoid loops.

¥ CTEs can be referenced from anywhere in the main query.

¥ Each CTE can be referenced multiple times in the main query, using different aliases if
necessary.

¥ When enclosed in parentheses, CTE constructs can be used as subqueries in SELECT statements,
but also in UPDATEs, MERGEs etc.

¥ In PSQL, CTEs are also supported in FOR loop headers:

for
Ê with my_rivers as (select * from rivers where owner = 'me')
Ê select name, length from my_rivers into :rname, :rlen
do
begin
Ê ..
end

Chapter 6. Data Manipulation (DML) Statements

242

" If a CTE is declared, it must be used later: otherwise, you will get an error like this:
ÔCTE "AAA" is not used in queryÕ.

Recursive CTEs

A recursive (self-referencing) CTE is a UNION which must have at least one non-recursive member,
called the anchor . The non-recursive member(s) must be placed before the recursive member(s).
Recursive members are linked to each other and to their non-recursive neighbour by UNION ALL
operators. The unions between non-recursive members may be of any type.

Recursive CTEs require the RECURSIVE keyword to be present right after WITH. Each recursive union
member may reference itself only once, and it must do so in a FROM clause.

A great benefit of recursive CTEs is that they use far less memory and CPU cycles than an
equivalent recursive stored procedure.

Execution Pattern

The execution pattern of a recursive CTE is as follows:

¥ The engine begins execution from a non-recursive member.

¥ For each row evaluated, it starts executing each recursive member one by one, using the
current values from the outer row as parameters.

¥ If the currently executing instance of a recursive member produces no rows, execution loops
back one level and gets the next row from the outer result set.

Chapter 6. Data Manipulation (DML) Statements

243

Example of recursive CTEs

WITH RECURSIVE DEPT_YEAR_BUDGET AS (
Ê SELECT
Ê FISCAL_YEAR,
Ê DEPT_NO,
Ê SUM(PROJECTED_BUDGET) BUDGET
Ê FROM PROJ_DEPT_BUDGET
Ê GROUP BY FISCAL_YEAR, DEPT_NO
),
DEPT_TREE AS (
Ê SELECT
Ê DEPT_NO,
Ê HEAD_DEPT,
Ê DEPARTMENT,
Ê CAST('' AS VARCHAR(255)) AS INDENT
Ê FROM DEPARTMENT
Ê WHERE HEAD_DEPT IS NULL
Ê UNION ALL
Ê SELECT
Ê D.DEPT_NO,
Ê D.HEAD_DEPT,
Ê D.DEPARTMENT,
Ê H.INDENT || ' '
Ê FROM DEPARTMENT D
Ê JOIN DEPT_TREE H ON H.HEAD_DEPT = D.DEPT_NO
)
SELECT
Ê D.DEPT_NO,
Ê D.INDENT || D.DEPARTMENT DEPARTMENT,
Ê DYB_2008.BUDGET AS BUDGET_08,
Ê DYB_2009.BUDGET AS BUDGET_09
FROM DEPT_TREE D
Ê LEFT JOIN DEPT_YEAR_BUDGET DYB_2008 ON
Ê (D.DEPT_NO = DYB_2008.DEPT_NO) AND
Ê (DYB_2008.FISCAL_YEAR = 2008)
Ê LEFT JOIN DEPT_YEAR_BUDGET DYB_2009 ON
Ê (D.DEPT_NO = DYB_2009.DEPT_NO) AND
Ê (DYB_2009.FISCAL_YEAR = 2009);

The next example returns the pedigree of a horse. The main difference is that recursion occurs
simultaneously in two branches of the pedigree.

WITH RECURSIVE PEDIGREE (
Ê CODE_HORSE,
Ê CODE_FATHER,
Ê CODE_MOTHER,
Ê NAME,
Ê MARK,
Ê DEPTH)

Chapter 6. Data Manipulation (DML) Statements

244

AS (SELECT
Ê HORSE.CODE_HORSE,
Ê HORSE.CODE_FATHER,
Ê HORSE.CODE_MOTHER,
Ê HORSE.NAME,
Ê CAST('' AS VARCHAR(80)),
Ê 0
Ê FROM
Ê HORSE
Ê WHERE
Ê HORSE.CODE_HORSE = :CODE_HORSE
Ê UNION ALL
Ê SELECT
Ê HORSE.CODE_HORSE,
Ê HORSE.CODE_FATHER,
Ê HORSE.CODE_MOTHER,
Ê HORSE.NAME,
Ê 'F' || PEDIGREE.MARK,
Ê PEDIGREE.DEPTH + 1
Ê FROM
Ê HORSE
Ê JOIN PEDIGREE
Ê ON HORSE.CODE_HORSE = PEDIGREE.CODE_FATHER
Ê WHERE
Ê PEDIGREE.DEPTH < :MAX_DEPTH
Ê UNION ALL
Ê SELECT
Ê HORSE.CODE_HORSE,
Ê HORSE.CODE_FATHER,
Ê HORSE.CODE_MOTHER,
Ê HORSE.NAME,
Ê 'M' || PEDIGREE.MARK,
Ê PEDIGREE.DEPTH + 1
Ê FROM
Ê HORSE
Ê JOIN PEDIGREE
Ê ON HORSE.CODE_HORSE = PEDIGREE.CODE_MOTHER
Ê WHERE
Ê PEDIGREE.DEPTH < :MAX_DEPTH
)
SELECT
Ê CODE_HORSE,
Ê NAME,
Ê MARK,
Ê DEPTH
FROM
Ê PEDIGREE

Notes on recursive CTEs

¥ Aggregates (DISTINCT, GROUP BY, HAVING) and aggregate functions (SUM, COUNT, MAX etc) are not

Chapter 6. Data Manipulation (DML) Statements

245

allowed in recursive union members.

¥ A recursive reference cannot participate in an outer join.

¥ The maximum recursion depth is 1024.

6.2. INSERT
Used for

Inserting rows of data into a table

Available in

DSQL, ESQL, PSQL

Syntax

INSERT INTO target
Ê {DEFAULT VALUES | [(<column_list>)] <value_source>}
Ê [RETURNING <returning_list> [INTO <variables>]]

<column_list> ::= colname [, colname ...]

<value_source> ::= VALUES (<value_list>) | <select_stmt>

<value_list> ::= <value> [, <value> ...]

<returning_list> ::= <ret_value> [, <ret_value> ...]

<ret_value> ::= colname | <value>

<variables> ::= [:] varname [, [:] varname ...]

Table 72. Arguments for the INSERT Statement Parameters

Argument Description

target The name of the table or view to which a new row, or batch of rows,
should be added

colname Column in the table or view

value An expression whose value is used for inserting into the table or for
returning

ret_value The expression to be returned in the RETURNING clause

varname Name of a PSQL local variable

Description

The INSERT statement is used to add rows to a table or to one or more tables underlying a view:

¥ If the column values are supplied in a VALUES clause, exactly one row is inserted

¥ The values may be provided instead by a SELECT expression, in which case zero to many rows

Chapter 6. Data Manipulation (DML) Statements

246

may be inserted

¥ With the DEFAULT VALUES clause, no values are provided at all and exactly one row is inserted.

!
Restrictions

¥ Columns returned to the NEW.column_name context variables in triggers should
not have a colon (Ò : Ó) prefixed to their names

¥ No column may appear more than once in the column list.

"

ALERT : BEFORE INSERT Triggers

Regardless of the method used for inserting rows, be mindful of any columns in
the target table or view that are populated by BEFORE INSERT triggers, such as
primary keys and case-insensitive search columns. Those columns should be
excluded from both the column_list and the VALUES list if, as they should, the
triggers test the NEW.column_name for NULL.

6.2.1. INSERT É VALUES

The VALUES list must provide a value for every column in the column list, in the same order and of
the correct type. The column list need not specify every column in the target but, if the column list
is absent, the engine requires a value for every column in the table or view (computed columns
excluded).

!
Introducer syntax provides a way to identify the character set of a value that is a
string constant (literal). Introducer syntax works only with literal strings: it cannot
be applied to string variables, parameters, column references or values that are
expressions.

Examples

INSERT INTO cars (make, model, year)
VALUES ('Ford', 'T', 1908);

INSERT INTO cars
VALUES ('Ford', 'T', 1908, 'USA', 850);

-- notice the '_' prefix (introducer syntax)
INSERT INTO People
VALUES (_ISO8859_1 'Hans-Jörg Schäfer');

6.2.2. INSERT É SELECT

For this method of inserting, the output columns of the SELECT statement must provide a value for
every target column in the column list, in the same order and of the correct type.

Literal values, context variables or expressions of compatible type can be substituted for any
column in the source row. In this case, a source column list and a corresponding VALUES list are

Chapter 6. Data Manipulation (DML) Statements

247

required.

If the column list is absent!Ñ!as it is when SELECT * is used for the source expression!Ñ!the
column_list must contain the names of every column in the target table or view (computed columns
excluded).

Examples

INSERT INTO cars (make, model, year)
Ê SELECT make, model, year
Ê FROM new_cars;

INSERT INTO cars
Ê SELECT * FROM new_cars;

INSERT INTO Members (number, name)
Ê SELECT number, name FROM NewMembers
Ê WHERE Accepted = 1
UNION ALL
Ê SELECT number, name FROM SuspendedMembers
Ê WHERE Vindicated = 1

INSERT INTO numbers(num)
Ê WITH RECURSIVE r(n) as (
Ê SELECT 1 FROM rdb$database
Ê UNION ALL
Ê SELECT n+1 FROM r WHERE n < 100
Ê)
SELECT n FROM r

Of course, the column names in the source table need not be the same as those in the target table.
Any type of SELECT statement is permitted, as long as its output columns exactly match the insert
columns in number, order and type. Types need not be exactly the same, but they must be
assignment-compatible.

The ÒUnstable CursorÓ Problem

In Firebird, up to and including Firebird 2.5, it is necessary to be aware of an implementation fault
that affects this style of inserts when the objective is to duplicate rows in the same table. For
example,

INSERT INTO T
Ê SELECT * FROM T;

known affectionately as the Òinfinite insertion loopÓ, will continuously select rows and insert them,
over and over, until the system runs out of storage space.

This is a quirk that affects all data-changing DML operations, with a variety of effects. It happens
because, in the execution layers, DML statements use implicit cursors for performing the

Chapter 6. Data Manipulation (DML) Statements

248

operations. Thus, using our simple example, execution works as follows:

FOR SELECT <values> FROM T INTO <tmp_vars>
Ê DO
Ê INSERT INTO T VALUES (<tmp_vars>);

The implementation results in behaviour that does not accord with the SQL standards. Future
versions of Firebird will comply with the standard.

6.2.3. INSERT É DEFAULT VALUES

The DEFAULT VALUES clause allows insertion of a record without providing any values at all, either
directly or from a SELECT statement. This is only possible if every NOT NULL or CHECKed column in the
table either has a valid default declared or gets such a value from a BEFORE INSERT trigger.
Furthermore, triggers providing required field values must not depend on the presence of input
values.

Example

INSERT INTO journal
Ê DEFAULT VALUES
RETURNING entry_id;

6.2.4. The RETURNING clause

An INSERT statement adding at most one row may optionally include a RETURNING clause in order to
return values from the inserted row. The clause, if present, need not contain all of the insert
columns and may also contain other columns or expressions. The returned values reflect any
changes that may have been made in BEFORE INSERT triggers.

"

ALERT : Multiple INSERTs

In DSQL, a statement with RETURNING always returns only one row. If the RETURNING
clause is specified and more than one row is inserted by the INSERT statement, the
statement fails and an error message is returned. This behaviour may change in
future Firebird versions.

Chapter 6. Data Manipulation (DML) Statements

249

Examples

INSERT INTO Scholars (
Ê firstname,
Ê lastname,
Ê address,
Ê phone,
Ê email)
VALUES (
Ê 'Henry',
Ê 'Higgins',
Ê '27A Wimpole Street',
Ê '3231212',
Ê NULL)
RETURNING lastname, fullname, id;

INSERT INTO Dumbbells (firstname, lastname, iq)
Ê SELECT fname, lname, iq
FROM Friends
Ê ORDER BY iq ROWS 1
Ê RETURNING id, firstname, iq
INTO :id, :fname, :iq;

Notes

¥ RETURNING is only supported for VALUES inserts and singleton SELECT inserts.

¥ In DSQL, a statement with a RETURNING clause always returns exactly one row. If no record was
actually inserted, the fields in this row are all NULL. This behaviour may change in a later
version of Firebird. In PSQL, if no row was inserted, nothing is returned, and the target
variables keep their existing values.

6.2.5. Inserting into BLOB columns

Inserting into BLOB columns is only possible under the following circumstances:

1. The client application has made special provisions for such inserts, using the Firebird API. In
this case, the modus operandi is application-specific and outside the scope of this manual.

2. The value inserted is a text string of no more than 32767 bytes.

If the value is not a string literal, beware of concatenations, as the output from
the expression may exceed the maximum length.

3. You are using the Ò INSERT É SELECTÓ form and one or more columns in the result set are BLOBs.

6.3. UPDATE
Used for

Modifying rows in tables and views

Chapter 6. Data Manipulation (DML) Statements

250

Available in

DSQL, ESQL, PSQL

Syntax

UPDATE target [[AS] alias]
Ê SET col = <value> [, col = <value> ...]
Ê [WHERE {<search-conditions> | CURRENT OF cursorname}]
Ê [PLAN <plan_items>]
Ê [ORDER BY <sort_items>]
Ê [ROWS m [TO n]]
Ê [RETURNING <returning_list> [INTO <variables>]]

<returning_list> ::= <ret_value> [, <ret_value> ...]

<ret_value> ::=
Ê colname
Ê | NEW.colname
Ê | OLD. colname
Ê | <value>

<variables> ::= [:] varname [, [:] varname ...]

Table 73. Arguments for the UPDATE Statement Parameters

Argument Description

target The name of the table or view where the records are updated

alias Alias for the table or view

col Name or alias of a column in the table or view

value Expression for the new value for a column that is to be updated in the
table or view by the statement, or a value to be returned

search-conditions A search condition limiting the set of the rows to be updated

cursorname The name of the cursor through which the row[s] to be updated are
positioned

plan_items Clauses in the query plan

sort_items Columns listed in an ORDER BY clause

m, n Integer expressions for limiting the number of rows to be updated

ret_value A value to be returned in the RETURNING clause

varname Name of a PSQL local variable

Description

The UPDATE statement changes values in a table or in one or more of the tables that underlie a view.
The columns affected are specified in the SET clause. The rows affected may be limited by the WHERE
and ROWS clauses. If neither WHERE nor ROWS is present, all the records in the table will be updated.

Chapter 6. Data Manipulation (DML) Statements

251

6.3.1. Using an alias

If you assign an alias to a table or a view, the alias must be used when specifying columns and also
in any column references included in other clauses.

Examples

Correct usage:

update Fruit set soort = 'pisang' where ...

update Fruit set Fruit.soort = 'pisang' where ...

update Fruit F set soort = 'pisang' where ...

update Fruit F set F.soort = 'pisang' where ...

Not possible:

update Fruit F set Fruit.soort = 'pisang' where ...

6.3.2. The SET Clause

In the SET clause, the assignment phrases, containing the columns with the values to be set, are
separated by commas. In an assignment phrase, column names are on the left and the values or
expressions containing the assignment values are on the right. A column may be included only
once in the SET clause.

A column name can be used in expressions on the right. The old value of the column will always be
used in these right-side values, even if the column was already assigned a new value earlier in the
SET clause.

Here is an example

Data in the TSET table:

A B

1 0
2 0

The statement:

UPDATE tset SET a = 5, b = a;

will change the values to:

Chapter 6. Data Manipulation (DML) Statements

252

A B

5 1
5 2

Notice that the old values (1 and 2) are used to update the b column even after the column was
assigned a new value (5).

!

It was not always like that. Before version 2.5, columns got their new values
immediately upon assignment. It was non-standard behaviour that was fixed in
version 2.5.

To maintain compatibility with legacy code, the configuration file firebird.conf
includes the parameter OldSetClauseSemantics, that can be set True (1) to restore
the old, bad behaviour. It is a temporary measure!Ñ!the parameter will be
removed in the future.

6.3.3. The WHERE Clause

The WHERE clause sets the conditions that limit the set of records for a searched update .

In PSQL, if a named cursor is being used for updating a set, using the WHERE CURRENT OF clause, the
action is limited to the row where the cursor is currently positioned. This is a positioned update .

!
The WHERE CURRENT OF clause is available only in PSQL, since there is no statement
for creating and manipulating an explicit cursor in DSQL. Searched updates are
also available in PSQL, of course.

Examples

UPDATE People
Ê SET firstname = 'Boris'
Ê WHERE lastname = 'Johnson';

UPDATE employee e
Ê SET salary = salary * 1.05
Ê WHERE EXISTS(
Ê SELECT *
Ê FROM employee_project ep
Ê WHERE e.emp_no = ep.emp_no);

UPDATE addresses
Ê SET city = 'Saint Petersburg', citycode = 'PET'
Ê WHERE city = 'Leningrad'

UPDATE employees
Ê SET salary = 2.5 * salary
Ê WHERE title = 'CEO'

Chapter 6. Data Manipulation (DML) Statements

253

For string literals with which the parser needs help to interpret the character set of the data, the
introducer syntax may be used. The string literal is preceded by the character set name, prefixed
with an underscore character:

-- notice the '_' prefix

UPDATE People
SET name = _ISO8859_1 'Hans-Jörg Schäfer'
WHERE id = 53662;

The ÒUnstable CursorÓ Problem

In Firebird, up to and including Firebird 2.5, it is necessary to be aware of an implementation fault
that affects updates when the WHERE conditions use the IN (<select-expr>) and the select-expr is of
the form SELECT FIRST n or SELECT É ROWS. For example:

UPDATE T
Ê SET ...
Ê WHERE ID IN (SELECT FIRST 1 ID FROM T);

known affectionately as the Òinfinite update loopÓ, will continuously update rows, over and over,
and give the impression that the server has hung.

Quirks like this can affect any data-changing DML operations, most often when the selection
conditions involve a subquery. Cases have been reported where sort order interferes with
expectations, without involving a subquery. It happens because, in the execution layers, instead of
establishing a stable Òtarget setÓ and then executing the data changes to each set member, DML
statements use implicit cursors for performing the operations on whatever row currently meets the
conditions, without knowledge of whether that row formerly failed the condition or was updated
already. Thus, using a simple example pattern:

UPDATE T SET <fields> = <values>
Ê WHERE <conditions>

the execution works as:

FOR SELECT <values> FROM T
Ê WHERE <conditions>
Ê INTO <tmp_vars> AS CURSOR <cursor>
Ê DO
Ê UPDATE T SET <fields> = <tmp_vars>
Ê WHERE CURRENT OF <cursor>

FirebirdÕs implementation does not accord with the SQL standards, which require that a stable set
be established before any data are changed. Firebird 3 and higher will comply with the standard.

Chapter 6. Data Manipulation (DML) Statements

254

6.3.4. The ORDER BY and ROWS Clauses

The ORDER BY and ROWS clauses make sense only when used together. However, they can be used
separately.

If ROWS has one argument, m, the rows to be updated will be limited to the first m rows.

Points to note

¥ If m > the number of rows being processed, the entire set of rows is updated

¥ If m = 0, no rows are updated

¥ If m < 0, an error occurs and the update fails

If two arguments are used, m and n, ROWS limits the rows being updated to rows from m to n
inclusively. Both arguments are integers and start from 1.

Points to note

¥ If m > the number of rows being processed, no rows are updated

¥ If n > the number of rows, rows from m to the end of the set are updated

¥ If m < 1 or n < 1, an error occurs and the update fails

¥ If n = m - 1, no rows are updated

¥ If n < m -1, an error occurs and the update fails

ROWS Example

UPDATE employees
SET salary = salary + 50
ORDER BY salary ASC
ROWS 20;

6.3.5. The RETURNING Clause

An UPDATE statement involving at most one row may include RETURNING in order to return some
values from the row being updated. RETURNING may include data from any column of the row, not
necessarily the columns that are currently being updated. It can include literals or expressions not
associated with columns, if there is a need for that.

When the RETURNING set contains data from the current row, the returned values report changes
made in the BEFORE UPDATE triggers, but not those made in AFTER UPDATE triggers.

The context variables OLD.fieldname and NEW.fieldname can be used as column names. If OLD. or NEW.
is not specified, the column values returned are the NEW. ones.

In DSQL, a statement with RETURNING always returns a single row. If the statement updates no
records, the returned values contain NULL. This behaviour may change in future Firebird versions.

Chapter 6. Data Manipulation (DML) Statements

255

The INTO Sub-clause

In PSQL, the INTO clause can be used to pass the returning values to local variables. It is not
available in DSQL. If no records are updated, nothing is returned and variables specified in
RETURNING will keep their previous values.

!

When a value is returned and assigned to a NEW context variable, it is not valid to
use a colon prefix on it. For example, this is invalid:

...
into :var1, :var2, :new.id

and this is valid:

...
into :var1, :var2, new.id

RETURNING Example (DSQL)

UPDATE Scholars
SET firstname = 'Hugh', lastname = 'Pickering'
WHERE firstname = 'Henry' and lastname = 'Higgins'
RETURNING id, old.lastname, new.lastname;

6.3.6. Updating BLOB columns

Updating a BLOB column always replaces the entire contents. Even the BLOB ID, the ÒhandleÓ that is
stored directly in the column, is changed. BLOBs can be updated if:

1. The client application has made special provisions for this operation, using the Firebird API. In
this case, the modus operandi is application-specific and outside the scope of this manual.

2. The new value is a text string of at most 32767 bytes. Please notice: if the value is not a string
literal, beware of concatenations, as these may exceed the maximum length.

3. The source is itself a BLOB column or, more generally, an expression that returns a BLOB.

4. You use the INSERT CURSOR statement (ESQL only).

6.4. UPDATE OR INSERT
Used for

Updating an existing record in a table or, if it does not exist, inserting it

Available in

DSQL, PSQL

Chapter 6. Data Manipulation (DML) Statements

256

Syntax

UPDATE OR INSERT INTO
Ê target [(<column_list>)]
Ê VALUES (<value_list>)
Ê [MATCHING (<column_list>)]
Ê [RETURNING <values> [INTO <variables>]]

<column_list> ::= colname [, colname ...]

<value_list> ::= <value> [, <value> ...]

<returning_list> ::= <ret_value> [, <ret_value> ...]

<ret_value> ::=
Ê colname
Ê | NEW.colname
Ê | OLD. colname
Ê | <value>

<variables> ::= [:] varname [, [:] varname ...]

Table 74. Arguments for the UPDATE OR INSERT Statement Parameters

Argument Description

target The name of the table or view where the record[s] is to be updated or a
new record inserted

colname Name of a column in the table or view

value An expression whose value is to be used for inserting or updating the
table, or returning a value

ret_value An expression returned in the RETURNING clause

varname Variable name!Ñ!PSQL only

Description

UPDATE OR INSERT inserts a new record or updates one or more existing records. The action taken
depends on the values provided for the columns in the MATCHING clause (or, if the latter is absent, in
the primary key). If there are records found matching those values, they are updated. If not, a new
record is inserted. A match only counts if all the values in the MATCHING or primary key columns are
equal. Matching is done with the IS NOT DISTINCT operator, so one NULL matches another.

Chapter 6. Data Manipulation (DML) Statements

257

!

Restrictions

¥ If the table has no primary key, the MATCHING clause is mandatory.

¥ In the MATCHING list as well as in the update/insert column list, each column
name may occur only once.

¥ The ÒINTO <variables> Ó subclause is only available in PSQL.

¥ When values are returned into the context variable NEW, this name must not be
preceded by a colon (Ò : Ó).

6.4.1. The RETURNING clause

The optional RETURNING clause, if present, need not contain all the columns mentioned in the
statement and may also contain other columns or expressions. The returned values reflect any
changes that may have been made in BEFORE triggers, but not those in AFTER triggers. OLD.fieldname
and NEW.fieldname may both be used in the list of columns to return; for field names not preceded
by either of these, the new value is returned.

In DSQL, a statement with a RETURNING clause always returns exactly one row. If a RETURNING clause is
present and more than one matching record is found, an error is raised. This behaviour may
change in a later version of Firebird.

6.4.2. Example of UPDATE OR INSERT

Modifying data in a table, using UPDATE OR INSERT in a PSQL module. The return value is passed to a
local variable, whose colon prefix is optional.

UPDATE OR INSERT INTO Cows (Name, Number, Location)
Ê VALUES ('Suzy Creamcheese', 3278823, 'Green Pastures')
Ê MATCHING (Number)
Ê RETURNING rec_id into :id;

"

The ÒUnstable CursorÓ Problem

Because of the way the execution of data-changing DML is implemented in
Firebird, up to and including Firebird 2.5, the sets targeted for updating sometimes
produce unexpected results. For more information, refer to The Unstable Cursor
Problem in the UPDATE section.

6.5. DELETE
Used for

Deleting rows from a table or view

Available in

DSQL, ESQL, PSQL

Chapter 6. Data Manipulation (DML) Statements

258

Syntax

DELETE
Ê FROM target [[AS] alias]
Ê [WHERE {<search-conditions> | CURRENT OF cursorname}]
Ê [PLAN <plan_items>]
Ê [ORDER BY <sort_items>]
Ê [ROWS m [TO n]]
Ê [RETURNING <returning_list> [INTO <variables>]]

<returning_list> ::= <ret_value> [, <ret_value> ...]

<ret_value> ::= colname | <value>

<variables> ::= [:] varname [, [:] varname ...]

Table 75. Arguments for the DELETE Statement Parameters

Argument Description

target The name of the table or view from which the records are to be deleted

alias Alias for the target table or view

search-conditions Search condition limiting the set of rows being targeted for deletion

cursorname The name of the cursor in which current record is positioned for deletion

plan_items Query plan clause

sort_items ORDER BY clause

m, n Integer expressions for limiting the number of rows being deleted

ret_value An expression to be returned in the RETURNING clause

value An expression whose value is used for returning

varname Name of a PSQL variable

Description

DELETE removes rows from a database table or from one or more of the tables that underlie a view.
WHERE and ROWS clauses can limit the number of rows deleted. If neither WHERE nor ROWS is present,
DELETE removes all the rows in the relation.

6.5.1. Aliases

If an alias is specified for the target table or view, it must be used to qualify all field name
references in the DELETE statement.

Examples

Supported usage:

Chapter 6. Data Manipulation (DML) Statements

259

delete from Cities where name starting 'Alex';

delete from Cities where Cities.name starting 'Alex';

delete from Cities C where name starting 'Alex';

delete from Cities C where C.name starting 'Alex';

Not possible:

delete from Cities C where Cities.name starting 'Alex';

6.5.2. WHERE

The WHERE clause sets the conditions that limit the set of records for a searched delete.

In PSQL, if a named cursor is being used for deleting a set, using the WHERE CURRENT OF clause, the
action is limited to the row where the cursor is currently positioned. This is a positioned delete .

!
The WHERE CURRENT OF clause is available only in PSQL and ESQL, since there is no
statement for creating and manipulating an explicit cursor in DSQL. Searched
deletes are also available in PSQL, of course.

Examples

DELETE FROM People
Ê WHERE firstname <> 'Boris' AND lastname <> 'Johnson';

DELETE FROM employee e
Ê WHERE NOT EXISTS(
Ê SELECT *
Ê FROM employee_project ep
Ê WHERE e.emp_no = ep.emp_no);

DELETE FROM Cities
Ê WHERE CURRENT OF Cur_Cities; -- ESQL and PSQL only

6.5.3. PLAN

A PLAN clause allows the user to optimize the operation manually.

Example

DELETE FROM Submissions
Ê WHERE date_entered < '1-Jan-2002'
Ê PLAN (Submissions INDEX ix_subm_date);

Chapter 6. Data Manipulation (DML) Statements

260

6.5.4. ORDER BY and ROWS

The ORDER BY clause orders the set before the actual deletion takes place. It only makes sense in
combination with ROWS, but is also valid without it.

The ROWS clause limits the number of rows being deleted. Integer literals or any integer expressions
can be used for the arguments m and n.

If ROWS has one argument, m, the rows to be deleted will be limited to the first m rows.

Points to note

¥ If m > the number of rows being processed, the entire set of rows is deleted

¥ If m = 0, no rows are deleted

¥ If m < 0, an error occurs and the deletion fails

If two arguments are used, m and n, ROWS limits the rows being deleted to rows from m to n
inclusively. Both arguments are integers and start from 1.

Points to note

¥ If m > the number of rows being processed, no rows are deleted

¥ If m > 0 and <= the number of rows in the set and n is outside these values, rows from m to the
end of the set are deleted

¥ If m < 1 or n < 1, an error occurs and the deletion fails

¥ If n = m - 1, no rows are deleted

¥ If n < m -1, an error occurs and the deletion fails

Examples

Deleting the oldest purchase:

DELETE FROM Purchases
Ê ORDER BY date ROWS 1;

Deleting the highest custno(s):

DELETE FROM Sales
Ê ORDER BY custno DESC ROWS 1 to 10;

Deleting all sales, ORDER BY clause pointless:

DELETE FROM Sales
Ê ORDER BY custno DESC;

Deleting one record starting from the end, i.e. from ZÉ:

Chapter 6. Data Manipulation (DML) Statements

261

DELETE FROM popgroups
Ê ORDER BY name DESC ROWS 1;

Deleting the five oldest groups:

DELETE FROM popgroups
Ê ORDER BY formed ROWS 5;

No sorting (ORDER BY) is specified so 8 found records, starting from the fifth one, will be deleted:

DELETE FROM popgroups
Ê ROWS 5 TO 12;

6.5.5. RETURNING

A DELETE statement removing at most one row may optionally include a RETURNING clause in order to
return values from the deleted row. The clause, if present, need not contain all the relationÕs
columns and may also contain other columns or expressions.

!

Notes

¥ In DSQL, a statement with RETURNING always returns a singleton, never a mult-
row set. If no records are deleted, the returned columns contain NULL. This
behaviour may change in future Firebird versions

¥ The INTO clause is available only in PSQL

" If the row is not deleted, nothing is returned and the target variables keep
their values

Examples

DELETE FROM Scholars
Ê WHERE firstname = 'Henry' and lastname = 'Higgins'
Ê RETURNING lastname, fullname, id;

DELETE FROM Dumbbells
Ê ORDER BY iq DESC
Ê ROWS 1
Ê RETURNING lastname, iq into :lname, :iq;

"

The ÒUnstable CursorÓ Problem

Because of the way the execution of data-changing DML is implemented in
Firebird, up to and including this version, the sets targeted for deletion sometimes
produce unexpected results. For more information, refer to The Unstable Cursor
Problem in the UPDATE section.

Chapter 6. Data Manipulation (DML) Statements

262

6.6. MERGE
Used for

Merging data from a source set into a target relation

Available in

DSQL, PSQL

Syntax

MERGE INTO target [[AS] target-alias]
Ê USING <source> [[AS] source-alias]
Ê ON <join-condition>
Ê [WHEN MATCHED
Ê THEN UPDATE SET colname = <value> [, <colname> = <value> ...]]
Ê [WHEN NOT MATCHED
Ê THEN INSERT [(<columns>)] VALUES (<values>)]

<source> ::= tablename | (<select-stmt>)
<columns> ::= colname [, colname ...]
<values> ::= <value> [, <value> ...]

Table 76. Arguments for the MERGE Statement Parameters

Argument Description

target Name of target relation (table or updatable view)

source Data source. It can be a table, a view, a stored procedure or a derived
table

target-alias Alias for the target relation (table or updatable view)

source-alias Alias for the source relation or set

join-conditions The (ON) condition[s] for matching the source records with those in the
target

tablename Table or view name

select-stmt Select statement of the derived table

colname Name of a column in the target relation

value The value assigned to a column in the target table. It is an expression that
may be a literal value, a PSQL variable, a column from the source or a
compatible context variable

Description

The MERGE statement merges data into a table or updatable view. The source may be a table, view or
Òanything you can SELECT fromÓ in general. Each source record will be used to update one or more
target records, insert a new record in the target table, or neither.

Chapter 6. Data Manipulation (DML) Statements

263

The action taken depends on the supplied join condition and the WHEN clause(s). The condition will
typically contain a comparison of fields in the source and target relations.

!

Notes

At least one WHEN clause must be present. Only one of each WHEN clause can be
supplied. This will change in the next major version of Firebird, when compound
matching conditions will be supported.

WHEN NOT MATCHED is evaluated from the source viewpoint, that is, the table or set
specified in USING. It has to work this way because, if the source record does not
match a target record, INSERT is executed. Of course, if there is a target record that
does not match a source record, nothing is done.

Currently, the ROW_COUNT variable returns the value 1, even if more than one record
is modified or inserted. For details and progress, refer to Tracker ticket CORE-4400 .

$

ALERT : Another irregularity!

If the WHEN MATCHED clause is present and several records match a single record in
the target table, an UPDATE will be executed on that one target record for each one
of the matching source records, with each successive update overwriting the
previous one. This behaviour does not comply with the SQL:2003 standard, which
requires that this situation throw an exception (an error).

Examples

MERGE INTO books b
Ê USING purchases p
Ê ON p.title = b.title and p.type = 'bk'
Ê WHEN MATCHED THEN
Ê UPDATE SET b.desc = b.desc || '; ' || p.desc
Ê WHEN NOT MATCHED THEN
Ê INSERT (title, desc, bought) values (p.title, p.desc, p.bought);

MERGE INTO customers c
Ê USING (SELECT * from customers_delta WHERE id > 10) cd
Ê ON (c.id = cd.id)
Ê WHEN MATCHED THEN
Ê UPDATE SET name = cd.name
Ê WHEN NOT MATCHED THEN
Ê INSERT (id, name) values (cd.id, cd.name);

Chapter 6. Data Manipulation (DML) Statements

264

http://tracker.firebirdsql.org/browse/CORE-4400

MERGE INTO numbers
Ê USING (
Ê WITH RECURSIVE r(n) AS (
Ê SELECT 1 FROM rdb$database
Ê UNION ALL
Ê SELECT n+1 FROM r WHERE n < 200
Ê)
Ê SELECT n FROM r
Ê) t
Ê ON numbers.num = t.n
Ê WHEN NOT MATCHED THEN
Ê INSERT(num) VALUES(t.n);

"

The ÒUnstable CursorÓ Problem

Because of the way the execution of data-changing DML is implemented in
Firebird, up to and including this version, the sets targeted for merging sometimes
produce unexpected results. For more information, refer to The Unstable Cursor
Problem in the UPDATE section.

6.7. EXECUTE PROCEDURE
Used for

Executing a stored procedure

Available in

DSQL, ESQL, PSQL

Syntax

EXECUTE PROCEDURE procname
Ê [<inparam> [, <inparam> ...]] | [(<inparam> [, <inparam> ...])]
Ê [RETURNING_VALUES <outvar> [, <outvar> ...] | (<outvar> [, <outvar> ...])]

<outvar> ::= [:] varname

Table 77. Arguments for the EXECUTE PROCEDURE Statement Parameters

Argument Description

procname Name of the stored procedure

inparam An expression evaluating to the declared data type of an input parameter

varname A PSQL variable to receive the return value

Description

Executes an executable stored procedure , taking a list of one or more input parameters, if they are
defined for the procedure, and returning a one-row set of output values, if they are defined for the
procedure.

Chapter 6. Data Manipulation (DML) Statements

265

6.7.1. ÒExecutableÓ Stored Procedure

The EXECUTE PROCEDURE statement is most commonly used to invoke the style of stored procedure
that is written to perform some data-modifying task at the server side!Ñ!those that do not contain
any SUSPEND statements in their code. They can be designed to return a result set, consisting of only
one row, which is usually passed, via a set of RETURNING_VALUES() variables, to another stored
procedure that calls it. Client interfaces usually have an API wrapper that can retrieve the output
values into a single-row buffer when calling EXECUTE PROCEDURE in DSQL.

Invoking the other style of stored procedure!Ñ!a ÒselectableÓ one!Ñ!is possible with EXECUTE
PROCEDURE but it returns only the first row of an output set which is almost surely designed to be
multi-row. Selectable stored procedures are designed to be invoked by a SELECT statement,
producing output that behaves like a virtual table.

!

Notes

¥ In PSQL and DSQL, input parameters may be any expression that resolves to
the expected type.

¥ Although parentheses are not required after the name of the stored procedure
to enclose the input parameters, their use is recommended for the sake of good
housekeeping.

¥ Where output parameters have been defined in a procedure, the
RETURNING_VALUES clause can be used in PSQL to retrieve them into a list of
previously declared variables that conforms in sequence, data type and
number with the defined output parameters.

¥ The list of RETURNING_VALUES may be optionally enclosed in parentheses and
their use is recommended.

¥ When DSQL applications call EXECUTE PROCEDURE using the Firebird API or some
form of wrapper for it, a buffer is prepared to receive the output row and the
RETURNING_VALUES clause is not used.

6.7.2. Examples of EXECUTE PROCEDURE

In PSQL, with optional colons and without optional parentheses:

EXECUTE PROCEDURE MakeFullName
Ê :FirstName, :MiddleName, :LastName
Ê RETURNING_VALUES :FullName;

In FirebirdÕs command-line utility isql , with literal parameters and optional parentheses:

EXECUTE PROCEDURE MakeFullName ('J', 'Edgar', 'Hoover');

! In isql , RETURNING_VALUES is not used. Any output values are captured by the
application and displayed automatically.

Chapter 6. Data Manipulation (DML) Statements

266

A PSQL example with expression parameters and optional parentheses:

EXECUTE PROCEDURE MakeFullName
Ê ('Mr./Mrs. ' || FirstName, MiddleName, upper(LastName))
Ê RETURNING_VALUES (FullName);

6.8. EXECUTE BLOCK
Used for

Creating an ÒanonymousÓ block of PSQL code in DSQL for immediate execution

Available in

DSQL

Syntax

EXECUTE BLOCK [(<inparams>)]
Ê [RETURNS (<outparams>)]
AS
Ê [<declarations>]
BEGIN
Ê [<PSQL statements>]
END

<inparams> ::= <param_decl> = ? [, <inparams>]
<outparams> ::= <param_decl> [, <outparams>]
<param_decl> ::= paramname <type> [NOT NULL] [COLLATE collation]
<type> ::= <datatype> | [TYPE OF] domain | TYPE OF COLUMN rel . col

<datatype> ::=
Ê {SMALLINT | INTEGER | BIGINT}
Ê | {FLOAT | DOUBLE PRECISION}
Ê | {DATE | TIME | TIMESTAMP}
Ê | {DECIMAL | NUMERIC} [(precision [, scale])]
Ê | {CHAR | CHARACTER} [VARYING] | VARCHAR} [(size)]
Ê [CHARACTER SET charset]
Ê | {NCHAR | NATIONAL {CHARACTER | CHAR}} [VARYING] [(size)]
Ê | BLOB [SUB_TYPE {subtype_num | subtype_name}]
Ê [SEGMENT SIZE seglen] [CHARACTER SET charset]
Ê | BLOB [(seglen [, subtype_num])]

<declarations> ::= <declare_item> [<declare_item> ...]
<declare_item> ::= <declare_var>; | <declare_cursor>;

Table 78. Arguments for the EXECUTE BLOCK Statement Parameters

Argument Description

param_decl Name and description of an input or output parameter

Chapter 6. Data Manipulation (DML) Statements

267

Argument Description

declarations A section for declaring local variables and named cursors

declare_var Local variable declaration

declare_cursor Declaration of a named cursor

paramname The name of an input or output parameter of the procedural block, up to
31 characters long. The name must be unique among input and output
parameters and local variables in the block

datatype SQL data type

collation Collation sequence

domain Domain

rel Name of a table or view

col Name of a column in a table or view

precision Precision. From 1 to 18

scale Scale. From 0 to 18. It must be less than or equal to precision

size The maximum size of a string, in characters

charset Character set

subtype_num BLOB subtype number

subtype_name BLOB subtype mnemonic name

seglen Segment size, it cannot be greater than 65,535

Description

Executes a block of PSQL code as if it were a stored procedure, optionally with input and output
parameters and variable declarations. This allows the user to perform Òon-the-flyÓ PSQL within a
DSQL context.

Examples

This example injects the numbers 0 through 127 and their corresponding ASCII characters into the
table ASCIITABLE:

EXECUTE BLOCK
AS
declare i INT = 0;
BEGIN
Ê WHILE (i < 128) DO
Ê BEGIN
Ê INSERT INTO AsciiTable VALUES (:i, ascii_char(:i));
Ê i = i + 1;
Ê END
END

The next example calculates the geometric mean of two numbers and returns it to the user:

Chapter 6. Data Manipulation (DML) Statements

268

EXECUTE BLOCK (x DOUBLE PRECISION = ?, y DOUBLE PRECISION = ?)
RETURNS (gmean DOUBLE PRECISION)
AS
BEGIN
Ê gmean = SQRT(x*y);
Ê SUSPEND;
END

Because this block has input parameters, it has to be prepared first. Then the parameters can be set
and the block executed. It depends on the client software how this must be done and even if it is
possible at all!Ñ!see the notes below. Our last example takes two integer values, smallest and
largest . For all the numbers in the range smallest É largest , the block outputs the number itself, its
square, its cube and its fourth power.

EXECUTE BLOCK (smallest INT = ?, largest INT = ?)
RETURNS (number INT, square BIGINT, cube BIGINT, fourth BIGINT)
AS
BEGIN
Ê number = smallest;
Ê WHILE (number <= largest) DO
Ê BEGIN
Ê square = number * number;
Ê cube = number * square;
Ê fourth = number * cube;
Ê SUSPEND;
Ê number = number + 1;
Ê END
END

Again, it depends on the client software if and how you can set the parameter values.

6.8.1. Input and output parameters

Executing a block without input parameters should be possible with every Firebird client that
allows the user to enter his or her own DSQL statements. If there are input parameters, things get
trickier: these parameters must get their values after the statement is prepared but before it is
executed. This requires special provisions, which not every client application offers. (FirebirdÕs
own isql , for one, doesnÕt.)

The server only accepts question marks (Ò ?Ó) as placeholders for the input values, not Ò :a Ó,
Ò:MyParamÓ etc., or literal values. Client software may support the Ò :xxx Ó form though, and will
preprocess it before sending it to the server.

If the block has output parameters, you must use SUSPEND or nothing will be returned.

Output is always returned in the form of a result set, just as with a SELECT statement. You canÕt use
RETURNING_VALUES or execute the block INTO some variables, even if there is only one result row.

Chapter 6. Data Manipulation (DML) Statements

269

PSQL Links

For more information about parameter and variable declarations, and <PSQL statements>
consult Chapter 7, Procedural SQL (PSQL) Statements .

For <declarations> in particular, see DECLARE [VARIABLE] and DECLARE CURSOR for the exact
syntax.

6.8.2. Statement Terminators

Some SQL statement editors!Ñ!specifically the isql utility that comes with Firebird and possibly
some third-party editors!Ñ!employ an internal convention that requires all statements to be
terminated with a semi-colon. This creates a conflict with PSQL syntax when coding in these
environments. If you are unacquainted with this problem and its solution, please study the details
in the PSQL chapter in the section entitled Switching the Terminator in isql .

Chapter 6. Data Manipulation (DML) Statements

270

Chapter 7. Procedural SQL (PSQL) Statements
Procedural SQL (PSQL) is a procedural extension of SQL. This language subset is used for writing
stored procedures, triggers, and PSQL blocks.

PSQL provides all the basic constructs of traditional structured programming languages, and also
includes DML statements (SELECT, INSERT, UPDATE, DELETE, etc.), with slight modifications to syntax in
some cases.

7.1. Elements of PSQL
A procedural extension may contain declarations of local variables and cursors, assignments,
conditional statements, loops, statements for raising custom exceptions, error handling and sending
messages (events) to client applications. Triggers have access to special context variables, two
arrays that store, respectively, the NEW values for all columns during insert and update activity, and
the OLD values during update and delete work.

Statements that modify metadata (DDL) are not available in PSQL.

7.1.1. DML Statements with Parameters

If DML statements (SELECT, INSERT, UPDATE, DELETE, etc.) in the body of the module (procedure, trigger
or block) use parameters, only named parameters can be used and they must ÒexistÓ before the
statements can use them. They can be made available by being declared either as input or output
parameters in the moduleÕs header or as local variables, in DECLARE [VARIABLE] statements at the
bottom of the header.

When a DML statement with parameters is included in PSQL code, the parameter name must be
prefixed by a colon (Ô : Õ) in most situations. The colon is optional in statement syntax that is specific
to PSQL, such as assignments and conditionals. The colon prefix on parameters is not required
when calling stored procedures from within another PSQL module or in DSQL.

7.1.2. Transactions

Stored procedures are executed in the context of the transaction in which they are called. Triggers
are executed as an intrinsic part of the operation of the DML statement: thus, their execution is
within the same transaction context as the statement itself. Individual transactions are launched
for database event triggers.

Statements that start and end transactions are not available in PSQL, but it is possible to run a
statement or a block of statements in an autonomous transaction.

7.1.3. Module Structure

PSQL code modules consist of a header and a body. The DDL statements for defining them are
complex statements ; that is, they consist of a single statement that encloses blocks of multiple
statements. These statements begin with a verb (CREATE, ALTER, DROP, RECREATE, CREATE OR ALTER) and
end with the last END statement of the body.

Chapter 7. Procedural SQL (PSQL) Statements

271

The Module Header

The header provides the module name and defines any parameters and variables that are used in
the body. Stored procedures and PSQL blocks may have input and output parameters. Triggers do
not have either input or output parameters.

The header of a trigger indicates the database event (insert, update or delete, or a combination) and
the phase of operation (BEFORE or AFTER that event) that will cause it to ÒfireÓ.

The Module Body

The body of a PSQL module is a block of statements that run in a logical sequence, like a program. A
block of statements is contained within a BEGIN and an END statement. The main BEGINÉEND block
may contain any number of other BEGINÉEND blocks, both embedded and sequential. All statements
except BEGIN and END are terminated by semicolons (Ô ; Õ). No other character is valid for use as a
terminator for PSQL statements.

Chapter 7. Procedural SQL (PSQL) Statements

272

Switching the Terminator in isql

Here we digress a little, to explain how to switch the terminator character in the isql utility to
make it possible to define PSQL modules in that environment without conflicting with isql
itself, which uses the same character, semicolon (Ô ; Õ), as its own statement terminator.

isql Command SET TERM

Used for

Changing the terminator character[s] to avoid conflict with the terminator character in PSQL
statements

Available in

ISQL only

Syntax

SET TERM new_terminator old_terminator

Table 79. SET TERM Parameters

Argument Description

new_terminator New terminator

old_terminator Old terminator

When you write your triggers and stored procedures in isql !Ñ!either in the interactive
interface or in scripts!Ñ!running a SET TERM statement is needed to switch the normal isql
statement terminator from the semicolon to some other character or short string, to avoid
conflict with the non-changeable semicolon terminator in PSQL. The switch to an alternative
terminator needs to be done before you begin defining PSQL objects or running your scripts.

The alternative terminator can be any string of characters except for a space, an apostrophe
or the current terminator character[s]. Any letter character[s] used will be case-sensitive.

Example

Changing the default semicolon to Ô ^Õ (caret) and using it to submit a stored procedure
definition: character as an alternative terminator character:

Chapter 7. Procedural SQL (PSQL) Statements

273

SET TERM ^;

CREATE OR ALTER PROCEDURE SHIP_ORDER (
Ê PO_NUM CHAR(8))
AS
BEGIN
Ê /* Stored procedure body */
END^

/* Other stored procedures and triggers */

SET TERM ;^

/* Other DDL statements */

7.2. Stored Procedures
A stored procedure is a program stored in the database metadata for execution on the server. A
stored procedure can be called by stored procedures (including itself), triggers and client
applications. A procedure that calls itself is known as recursive .

7.2.1. Benefits of Stored Procedures

Stored procedures have the following advantages:

Modularity applications working with the database can use the same
stored procedure, thereby reducing the size of the
application code and avoiding code duplication.

Simpler Application Support when a stored procedure is modified, changes appear
immediately to all host applications, without the need to
recompile them if the parameters were unchanged.

Enhanced Performance since stored procedures are executed on a server instead of
at the client, network traffic is reduced, which improves
performance.

7.2.2. Types of Stored Procedures

Firebird supports two types of stored procedures: executable and selectable.

Executable Procedures

Executable procedures usually modify data in a database. They can receive input parameters and
return a single set of output (RETURNS) parameters. They are called using the EXECUTE PROCEDURE
statement. See an example of an executable stored procedure at the end of the CREATE PROCEDURE

Chapter 7. Procedural SQL (PSQL) Statements

274

section of Chapter 5.

Selectable Procedures

Selectable stored procedures usually retrieve data from a database, returning an arbitrary number
of rows to the caller. The caller receives the output one row at a time from a row buffer that the
database engine prepares for it.

Selectable procedures can be useful for obtaining complex sets of data that are often impossible or
too difficult or too slow to retrieve using regular DSQL SELECT queries. Typically, this style of
procedure iterates through a looping process of extracting data, perhaps transforming it before
filling the output variables (parameters) with fresh data at each iteration of the loop. A SUSPEND
statement at the end of the iteration fills the buffer and waits for the caller to fetch the row.
Execution of the next iteration of the loop begins when the buffer has been cleared.

Selectable procedures may have input parameters and the output set is specified by the RETURNS
clause in the header.

A selectable stored procedure is called with a SELECT statement. See an example of a selectable
stored procedure at the end of the CREATE PROCEDURE section of Chapter 5.

7.2.3. Creating a Stored Procedure

The syntax for creating executable stored procedures and selectable stored procedures is exactly
the same. The difference comes in the logic of the program code.

Syntax (partial)

CREATE PROCEDURE procname
Ê [(<inparam> [, <inparam> ...])]
Ê [RETURNS (<outparam> [, <outparam> ...])]
AS
Ê [<declarations>]
BEGIN
Ê [<PSQL_statements>]
END

The header of a stored procedure must contain the procedure name, and it must be unique among
the names of stored procedures, tables, and views. It may also define some input and output
parameters. Input parameters are listed after the procedure name inside a pair of brackets. Output
parameters, which are mandatory for selectable procedures, are bracketed inside one RETURNS
clause.

The final item in the header (or the first item in the body, depending on your opinion of where the
border lies) is one or more declarations of any local variables and/or named cursors that your
procedure might require.

Following the declarations is the main BEGINÉEND block that delineates the procedureÕs PSQL code.
Within that block could be PSQL and DML statements, flow-of-control blocks, sequences of other
BEGINÉEND blocks, including embedded blocks. Blocks, including the main block, may be empty and

Chapter 7. Procedural SQL (PSQL) Statements

275

the procedure will still compile. It is not unusual to develop a procedure in stages, from an outline.

For more information about creating stored procedures

See CREATE PROCEDURE in Chapter 5, Data Definition (DDL) Statements .

7.2.4. Modifying a Stored Procedure

An existing stored procedure can be altered, to change the sets of input and output parameters and
anything in the procedure body.

Syntax (partial)

ALTER PROCEDURE procname
Ê [(<inparam> [, <inparam> ...])]
Ê [RETURNS (<outparam> [, <outparam> ...])]
AS
Ê [<declarations>]
BEGIN
Ê [<PSQL_statements>]
END

For more information about modifying stored procedures

See ALTER PROCEDURE, CREATE OR ALTER PROCEDURE, RECREATE PROCEDURE, in Chapter 5, Data Definition
(DDL) Statements .

7.2.5. Deleting a Stored Procedure

The DROP PROCEDURE statement is used to delete stored procedures.

Syntax (complete)

DROP PROCEDURE procname

For more information about deleting stored procedures

See DROP PROCEDURE in Chapter 5, Data Definition (DDL) Statements .

7.3. Stored Functions
Stored PSQL scalar functions are not supported in this version but they are coming in Firebird 3. In
Firebird 2.5 and below, you can instead write a selectable stored procedure that returns a scalar
result and SELECT it from your DML query or subquery.

Chapter 7. Procedural SQL (PSQL) Statements

276

Example

SELECT
Ê PSQL_FUNC(T.col1, T.col2) AS col3,
Ê col3
FROM T

can be replaced with:

SELECT
Ê (SELECT output_column FROM PSQL_PROC(T.col1)) AS col3,
Ê col2
FROM T

or

SELECT
Ê output_column AS col3,
Ê col2,
FROM T
LEFT JOIN PSQL_PROC(T.col1)

7.4. PSQL Blocks
A self-contained, unnamed (ÒanonymousÓ) block of PSQL code can be executed dynamically in
DSQL, using the EXECUTE BLOCK syntax. The header of an anonymous PSQL block may optionally
contain input and output parameters. The body may contain local variable and cursor declarations;
and a block of PSQL statements follows.

An anonymous PSQL block is not defined and stored as an object, unlike stored procedures and
triggers. It executes in run-time and cannot reference itself.

Just like stored procedures, anonymous PSQL blocks can be used to process data and to retrieve
data from the database.

Syntax (incomplete)

EXECUTE BLOCK
Ê [(<inparam> = ? [, <inparam> = ? ...])]
Ê [RETURNS (<outparam> [, <outparam> ...])]
AS
Ê [<declarations>]
BEGIN
Ê [<PSQL_statements>]
END

Table 80. PSQL Block Parameters

Chapter 7. Procedural SQL (PSQL) Statements

277

Argument Description

inparam Input parameter description

outparam Output parameter description

declarations A section for declaring local variables and named cursors

PSQL statements PSQL and DML statements

Read more

See EXECUTE BLOCK for details.

7.5. Triggers
A trigger is another form of executable code that is stored in the metadata of the database for
execution by the server. A trigger cannot be called directly. It is called automatically (ÒfiredÓ) when
data-changing events involving one particular table or view occur.

One trigger applies to exactly one table or view and only one phase in an event (BEFORE or AFTER the
event). A single trigger might be written to fire only when one specific data-changing event occurs
(INSERT, UPDATE or DELETE) or it might be written to apply to more than one of those.

A DML trigger is executed in the context of the transaction in which the data-changing DML
statement is running. For triggers that respond to database events, the rule is different: for some of
them, a default transaction is started.

7.5.1. Firing Order (Order of Execution)

More than one trigger can be defined for each phase-event combination. The order in which they
are executed (known as Òfiring orderÓ can be specified explicitly with the optional POSITION
argument in the trigger definition. You have 32,767 numbers to choose from. Triggers with the
lowest position numbers fire first.

If a POSITION clause is omitted, or if several matching event-phase triggers have the same position
number, then the triggers will fire in alphabetical order.

7.5.2. DML Triggers

DML triggers are those that fire when a DML operation changes the state of data: modifies rows in
tables, inserts new rows or deletes rows. They can be defined for both tables and views.

Trigger Options

Six base options are available for the event-phase combination for tables and views:

Before a new row is inserted BEFORE INSERT

After a new row is inserted AFTER INSERT

Before a row is updated BEFORE UPDATE

Chapter 7. Procedural SQL (PSQL) Statements

278

After a row is updated AFTER UPDATE

Before a row is deleted BEFORE DELETE

After a row is deleted AFTER DELETE

These base forms are for creating single phase/single-event triggers. Firebird also supports forms
for creating triggers for one phase and multiple-events, BEFORE INSERT OR UPDATE OR DELETE, for
example, or AFTER UPDATE OR DELETE: the combinations are your choice.

! ÒMulti-phaseÓ triggers, such as BEFORE OR AFTER É, are not possible.

OLD and NEW Context Variables

For DML triggers, the Firebird engine provides access to sets of OLD and NEW context variables. Each
is an array of the values of the entire row: one for the values as they are before the data-changing
event (the BEFORE phase) and one for the values as they will be after the event (the AFTER phase).
They are referenced in statements using the form NEW.column_name and OLD.column_name,
respectively. The column_name can be any column in the tableÕs definition, not just those that are
being updated.

The NEW and OLD variables are subject to some rules:

¥ In all triggers, the OLD value is read-only

¥ In BEFORE UPDATE and BEFORE INSERT code, the NEW value is read/write, unless it is a COMPUTED BY
column

¥ In INSERT triggers, references to the OLD variables are invalid and will throw an exception

¥ In DELETE triggers, references to the NEW variables are invalid and will throw an exception

¥ In all AFTER trigger code, the NEW variables are read-only

7.5.3. Database Triggers

A trigger associated with a database or transaction event can be defined for the following events:

Connecting to a
database

ON CONNECT Before the trigger is executed, a default transaction
is automatically started

Disconnecting from a
database

ON DISCONNECT Before the trigger is executed, a default transaction
is automatically started

When a transaction is
started

ON TRANSACTION STARTThe trigger is executed in the current transaction
context

When a transaction is
committed

ON TRANSACTION
COMMIT

The trigger is executed in the current transaction
context

When a transaction is
cancelled

ON TRANSACTION
ROLLBACK

The trigger is executed in the current transaction
context

Chapter 7. Procedural SQL (PSQL) Statements

279

7.5.4. Creating Triggers

Syntax

CREATE TRIGGER trigname {
Ê <relation_trigger_legacy>
Ê | <relation_trigger_sql2003>
Ê | <database_trigger> }
AS
Ê [<declarations>]
BEGIN
Ê [<PSQL_statements>]
END

<relation_trigger_legacy> ::=
Ê FOR {tablename | viewname}
Ê [ACTIVE | INACTIVE]
Ê {BEFORE | AFTER} <mutation_list>
Ê [POSITION number]

<relation_trigger_sql2003> ::=
Ê [ACTIVE | INACTIVE]
Ê {BEFORE | AFTER} <mutation_list>
Ê [POSITION number]
Ê ON {tablename | viewname}

<database_trigger> ::=
Ê [ACTIVE | INACTIVE]
Ê ON <db_event>
Ê [POSITION number]

<mutation_list> ::=
Ê <mutation> [OR <mutation> [OR <mutation>]]

<mutation> ::= { INSERT | UPDATE | DELETE }

<db_event> ::=
Ê CONNECT
Ê | DISCONNECT
Ê | TRANSACTION START
Ê | TRANSACTION COMMIT
Ê | TRANSACTION ROLLBACK

The header must contain a name for the trigger that is unique among trigger names. It must include
the event or events that will fire the trigger. Also, for a DML trigger it is mandatory to specify the
event phase and the name of the table or view that is to ÒownÓ the trigger.

The body of the trigger can be headed by the declarations of local variables and cursors, if any.
Within the enclosing main BEGINÉEND wrapper will be one or more blocks of PSQL statements,
which may be empty.

Chapter 7. Procedural SQL (PSQL) Statements

280

For more information about creating triggers

See ">CREATE TRIGGER in Chapter 5, Data Definition (DDL) Statements .

7.5.5. Modifying Triggers

Altering the status, phase, table or view event(s), firing position and code in the body of a DML
trigger are all possible. However, you cannot modify a DML trigger to convert it to a database
trigger, nor vice versa. Any element not specified is left unchanged by ALTER TRIGGER. The
alternative statements CREATE OR ALTER TRIGGER and RECREATE TRIGGER will replace the original
trigger definition entirely.

Syntax

ALTER TRIGGER trigname
Ê [ACTIVE | INACTIVE]
Ê [{BEFORE | AFTER} <mutation_list> | ON <db_event>]
Ê [POSITION number]
Ê [
Ê AS
Ê [<declarations>]
Ê BEGIN
Ê [<PSQL_statements>]
Ê END
Ê]

<mutation_list> ::=
Ê <mutation> [OR <mutation> [OR <mutation>]]

<mutation> ::= { INSERT | UPDATE | DELETE }

<db_event> ::=
Ê { CONNECT
Ê | DISCONNECT
Ê | TRANSACTION START
Ê | TRANSACTION COMMIT
Ê | TRANSACTION ROLLBACK }

For more information about modifying triggers

See ALTER TRIGGER, CREATE OR ALTER TRIGGER, RECREATE TRIGGER in Chapter 5, Data Definition (DDL)
Statements .

7.5.6. Deleting a Trigger

The DROP TRIGGER statement is used to delete triggers.

Syntax (complete)

DROP TRIGGER trigname

Chapter 7. Procedural SQL (PSQL) Statements

281

For more information about deleting triggers

See DROP TRIGGER in Chapter 5, Data Definition (DDL) Statements .

7.6. Writing the Body Code
This section takes a closer look at the procedural SQL language constructs and statements that are
available for coding the body of a stored procedure, trigger or anonymous PSQL block.

Colon Marker (Ô : Õ)

The colon marker prefix (Ô : Õ) is used in PSQL to mark a reference to a variable in a DML
statement. The colon marker is not required before variable names in other code and it
should never be applied to context variables.

7.6.1. Assignment Statements

Used for

Assigning a value to a variable

Available in

PSQL

Syntax

varname = <value_expr>

Table 81. Assignment Statement Parameters

Argument Description

varname Name of a parameter or local variable

value_expr An expression, constant or variable whose value resolves to the same
data type as varname

PSQL uses the equivalence symbol (Ô=Õ) as its assignment operator. The assignment statement
assigns an SQL expression value on the right to the variable on the left of the operator. The
expression can be any valid SQL expression: it may contain literals, internal variable names,
arithmetic, logical and string operations, calls to internal functions or to external functions (UDFs).

Chapter 7. Procedural SQL (PSQL) Statements

282

Example using assignment statements

CREATE PROCEDURE MYPROC (
Ê a INTEGER,
Ê b INTEGER,
Ê name VARCHAR (30)
)
RETURNS (
Ê c INTEGER,
Ê str VARCHAR(100))
AS
BEGIN
Ê -- assigning a constant
Ê c = 0;
Ê str = '';
Ê SUSPEND;
Ê -- assigning expression values
Ê c = a + b;
Ê str = name || CAST(b AS VARCHAR(10));
Ê SUSPEND;
Ê -- assigning expression value
Ê -- built by a query
Ê c = (SELECT 1 FROM rdb$database);
Ê -- assigning a value from a context variable
Ê str = CURRENT_USER;
Ê SUSPEND;
END

See also

DECLARE VARIABLE

7.6.2. DECLARE CURSOR

Used for

Declaring a named cursor

Available in

PSQL

Syntax

DECLARE [VARIABLE] cursorname CURSOR FOR (<select>) [FOR UPDATE]

Table 82. DECLARE CURSOR Statement Parameters

Argument Description

cursorname Cursor name

select SELECT statement

Chapter 7. Procedural SQL (PSQL) Statements

283

The DECLARE CURSOR É FOR statement binds a named cursor to the result set obtained in the SELECT
statement specified in the FOR clause. In the body code, the cursor can be opened, used to walk row-
by-row through the result set and closed. While the cursor is open, the code can perform positioned
updates and deletes using the WHERE CURRENT OF in the UPDATE or DELETE statement.

Cursor Idiosyncrasies

¥ The optional FOR UPDATE clause can be included in the SELECT statement but its absence does not
prevent successful execution of a positioned update or delete

¥ Care should be taken to ensure that the names of declared cursors do not conflict with any
names used subsequently in statements for AS CURSOR clauses

¥ If the cursor is needed only to walk the result set, it is nearly always easier and less error-prone
to use a FOR SELECT statement with the AS CURSOR clause. Declared cursors must be explicitly
opened, used to fetch data and closed. The context variable ROW_COUNT has to be checked after
each fetch and, if its value is zero, the loop has to be terminated. A FOR SELECT statement checks
it automatically.

Nevertheless, declared cursors provide a high level of control over sequential events and allow
several cursors to be managed in parallel.

¥ The SELECT statement may contain parameters. For instance:

SELECT NAME || :SFX FROM NAMES WHERE NUMBER = :NUM

Each parameter has to have been declared beforehand as a PSQL variable, even if they
originate as input and output parameters. When the cursor is opened, the parameter is assigned
the current value of the variable.

$

Attention!

If the value of a PSQL variable used in the SELECT statement changes during the
loop, its new value may (but not always) be used for the remaining rows. It is
better to avoid having such situations arise unintentionally. If you really need this
behaviour, you should test your code carefully to be certain that you know exactly
how changes in the variable affect the result.

Note particularly that the behaviour may depend on the query plan, specifically on
the indexes being used. No strict rules are in place for situations like this currently,
but that could change in future versions of Firebird.

Examples Using Named Cursors

1. Declaring a named cursor in the trigger.

Chapter 7. Procedural SQL (PSQL) Statements

284

CREATE OR ALTER TRIGGER TBU_STOCK
Ê BEFORE UPDATE ON STOCK
AS
Ê DECLARE C_COUNTRY CURSOR FOR (
Ê SELECT
Ê COUNTRY,
Ê CAPITAL
Ê FROM COUNTRY
Ê);
BEGIN
Ê /* PSQL statements */
END

2. A collection of scripts for creating views with a PSQL block using named cursors.

EXECUTE BLOCK
RETURNS (
Ê SCRIPT BLOB SUB_TYPE TEXT)
AS
Ê DECLARE VARIABLE FIELDS VARCHAR(8191);
Ê DECLARE VARIABLE FIELD_NAME TYPE OF RDB$FIELD_NAME;
Ê DECLARE VARIABLE RELATION RDB$RELATION_NAME;
Ê DECLARE VARIABLE SOURCE TYPE OF COLUMN RDB$RELATIONS.RDB$VIEW_SOURCE;
Ê DECLARE VARIABLE CUR_R CURSOR FOR (
Ê SELECT
Ê RDB$RELATION_NAME,
Ê RDB$VIEW_SOURCE
Ê FROM
Ê RDB$RELATIONS
Ê WHERE
Ê RDB$VIEW_SOURCE IS NOT NULL);
-- Declaring a named cursor where
-- a local variable is used
Ê DECLARE CUR_F CURSOR FOR (
Ê SELECT
Ê RDB$FIELD_NAME
Ê FROM
Ê RDB$RELATION_FIELDS
Ê WHERE
Ê -- It is important that the variable must be declared earlier
Ê RDB$RELATION_NAME = :RELATION);
BEGIN
Ê OPEN CUR_R;
Ê WHILE (1 = 1) DO
Ê BEGIN
Ê FETCH CUR_R
Ê INTO :RELATION, :SOURCE;
Ê IF (ROW_COUNT = 0) THEN
Ê LEAVE;

Chapter 7. Procedural SQL (PSQL) Statements

285

Ê FIELDS = NULL;
Ê -- The CUR_F cursor will use the value
Ê -- of the RELATION variable initiated above
Ê OPEN CUR_F;
Ê WHILE (1 = 1) DO
Ê BEGIN
Ê FETCH CUR_F
Ê INTO :FIELD_NAME;
Ê IF (ROW_COUNT = 0) THEN
Ê LEAVE;
Ê IF (FIELDS IS NULL) THEN
Ê FIELDS = TRIM(FIELD_NAME);
Ê ELSE
Ê FIELDS = FIELDS || ', ' || TRIM(FIELD_NAME);
Ê END
Ê CLOSE CUR_F;

Ê SCRIPT = 'CREATE VIEW ' || RELATION;

Ê IF (FIELDS IS NOT NULL) THEN
Ê SCRIPT = SCRIPT || ' (' || FIELDS || ')';

Ê SCRIPT = SCRIPT || ' AS ' || ASCII_CHAR(13);
Ê SCRIPT = SCRIPT || SOURCE;

Ê SUSPEND;
Ê END
Ê CLOSE CUR_R;
END

See also

OPEN, FETCH, CLOSE

7.6.3. DECLARE VARIABLE

Used for

Declaring a local variable

Available in

PSQL

Chapter 7. Procedural SQL (PSQL) Statements

286

Syntax

DECLARE [VARIABLE] varname
Ê {<datatype> | domain | TYPE OF { domain | COLUMN rel . col }
Ê [NOT NULL] [CHARACTER SET charset] [COLLATE collation]
Ê [{DEFAULT | = } <initvalue>];

<datatype> ::=
Ê {SMALLINT | INTEGER | BIGINT}
Ê | {FLOAT | DOUBLE PRECISION}
Ê | {DATE | TIME | TIMESTAMP}
Ê | {DECIMAL | NUMERIC} [(precision [, scale])]
Ê | {CHAR | CHARACTER [VARYING] | VARCHAR} [(size)]
Ê [CHARACTER SET charset]
Ê | {NCHAR | NATIONAL {CHARACTER | CHAR}} [VARYING]
Ê [(size)]
Ê | BLOB [SUB_TYPE {subtype_num | subtype_name}]
Ê [SEGMENT SIZE seglen] [CHARACTER SET charset]
Ê | BLOB [(seglen [, subtype_num])]

<initvalue> ::= <literal> | <context_var>

Table 83. DECLARE VARIABLE Statement Parameters

Argument Description

varname Name of the local variable

datatype An SQL data type

domain The name of an existing domain in this database

rel.col Relation name (table or view) in this database and the name of a column
in that relation

precision Precision. From 1 to 18

scale Scale. From 0 to 18, it must be less than or equal to precision

size The maximum size of a string in characters

subtype_num BLOB subtype number

subtype_name BLOB subtype mnemonic name

seglen Segment size, not greater than 65,535

initvalue Initial value for this variable

literal Literal of a type compatible with the type of the local variable

context_var Any context variable whose type is compatible with the type of the local
variable

charset Character set

collation Collation sequence

Chapter 7. Procedural SQL (PSQL) Statements

287

The statement DECLARE [VARIABLE] is used for declaring a local variable. The keyword VARIABLE can
be omitted. One DECLARE [VARIABLE] statement is required for each local variable. Any number of
DECLARE [VARIABLE] statements can be included and in any order. The name of a local variable must
be unique among the names of local variables and input and output parameters declared for the
module.

Data Type for Variables

A local variable can be of any SQL type other than an array.

¥ A domain name can be specified as the type and the variable will inherit all of its attributes.

¥ If the TYPE OF domain clause is used instead, the variable will inherit only the domainÕs data type,
and, if applicable, its character set and collation attributes. Any default value or constraints
such as NOT NULL or CHECK constraints are not inherited.

¥ If the TYPE OF COLUMN relation . column> option is used to ÒborrowÓ from a column in a table or
view, the variable will inherit only the columnÕs data type, and, if applicable, its character set
and collation attributes. Any other attributes are ignored.

NOT NULL Constraint

The variable can be constrained NOT NULL if required. If a domain has been specified as the data
type and already carries the NOT NULL constraint, it will not be necessary. With the other forms,
including use of a domain that is nullable, the NOT NULL attribute should be included if needed.

CHARACTER SET and COLLATE clauses

Unless specified, the character set and collation sequence of a string variable will be the database
defaults. A CHARACTER SET clause can be included, if required, to handle string data that is going to
be in a different character set. A valid collation sequence (COLLATE clause) can also be included, with
or without the character set clause.

Initializing a Variable

Local variables are NULL when execution of the module begins. They can be initialized so that a
starting or default value is available when they are first referenced. The DEFAULT <initvalue> form
can be used, or just the assignment operator, Ô =Õ: = <initvalue> . The value can be any type-
compatible literal or context variable.

" Be sure to use this clause for any variables that are constrained to be NOT NULL and
do not otherwise have a default value available.

Examples of various ways to declare local variables

Chapter 7. Procedural SQL (PSQL) Statements

288

CREATE OR ALTER PROCEDURE SOME_PROC
AS
Ê -- Declaring a variable of the INT type
Ê DECLARE I INT;
Ê -- Declaring a variable of the INT type that does not allow NULL
Ê DECLARE VARIABLE J INT NOT NULL;
Ê -- Declaring a variable of the INT type with the default value of 0
Ê DECLARE VARIABLE K INT DEFAULT 0;
Ê -- Declaring a variable of the INT type with the default value of 1
Ê DECLARE VARIABLE L INT = 1;
Ê -- Declaring a variable based on the COUNTRYNAME domain
Ê DECLARE FARM_COUNTRY COUNTRYNAME;
Ê -- Declaring a variable of the type equal to the COUNTRYNAME domain
Ê DECLARE FROM_COUNTRY TYPE OF COUNTRYNAME;
Ê -- Declaring a variable with the type of the CAPITAL column in the COUNTRY table
Ê DECLARE CAPITAL TYPE OF COLUMN COUNTRY.CAPITAL;
BEGIN
Ê /* PSQL statements */
END

See also

Data Types and Subtypes , Custom Data Types!Ñ!Domains , CREATE DOMAIN

7.6.4. BEGIN É END

Used for

Delineating a block of statements

Available in

PSQL

Syntax

<block> ::=
Ê BEGIN
Ê [<compound_statement>
Ê É]
Ê END

<compound_statement> ::= {<block> | <statement>;}

The BEGIN É END construct is a two-part statement that wraps a block of statements that are
executed as one unit of code. Each block starts with the half-statement BEGIN and ends with the
other half-statement END. Blocks can be nested to unlimited depth. They may be empty, allowing
them to act as stubs, without the need to write dummy statements.

The BEGIN and END statements have no line terminators. However, when defining or altering a
PSQL module in the isql utility, that application requires that the last END statement be followed by

Chapter 7. Procedural SQL (PSQL) Statements

289

its own terminator character, that was previously switched, using SET TERM, to some string other
than a semicolon. That terminator is not part of the PSQL syntax.

The final, or outermost, END statement in a trigger terminates the trigger. What the final END
statement does in a stored procedure depends on the type of procedure:

¥ In a selectable procedure, the final END statement returns control to the caller, returning
SQLCODE 100, indicating that there are no more rows to retrieve

¥ In an executable procedure, the final END statement returns control to the caller, along with the
current values of any output parameters defined.

Example

A sample procedure from the employee.fdb database, showing simple usage of BEGINÉEND blocks:

Chapter 7. Procedural SQL (PSQL) Statements

290

SET TERM ^;
CREATE OR ALTER PROCEDURE DEPT_BUDGET (
Ê DNO CHAR(3))
RETURNS (
Ê TOT DECIMAL(12,2))
AS
Ê DECLARE VARIABLE SUMB DECIMAL(12,2);
Ê DECLARE VARIABLE RDNO CHAR(3);
Ê DECLARE VARIABLE CNT INTEGER;
BEGIN
Ê TOT = 0;

Ê SELECT
Ê BUDGET
Ê FROM
Ê DEPARTMENT
Ê WHERE DEPT_NO = :DNO
Ê INTO :TOT;

Ê SELECT
Ê COUNT(BUDGET)
Ê FROM
Ê DEPARTMENT
Ê WHERE HEAD_DEPT = :DNO
Ê INTO :CNT;

Ê IF (CNT = 0) THEN
Ê SUSPEND;

Ê FOR
Ê SELECT
Ê DEPT_NO
Ê FROM
Ê DEPARTMENT
Ê WHERE HEAD_DEPT = :DNO
Ê INTO :RDNO
Ê DO
Ê BEGIN
Ê EXECUTE PROCEDURE DEPT_BUDGET(:RDNO)
Ê RETURNING_VALUES :SUMB;
Ê TOT = TOT + SUMB;
Ê END

Ê SUSPEND;
END^
SET TERM ;^

See also

EXIT, LEAVE, SET TERM

Chapter 7. Procedural SQL (PSQL) Statements

291

7.6.5. IF É THEN É ELSE

Used for

Conditional jumps

Available in

PSQL

Syntax

IF (<condition>)
Ê THEN <compound_statement>
Ê [ELSE <compound_statement>]

Table 84. IF É THEN É ELSE Parameters

Argument Description

condition A logical condition returning TRUE, FALSE or UNKNOWN

single_statement A single statement terminated with a semicolon

compound_statement Two or more statements wrapped in BEGIN É END

The conditional jump statement IF É THEN is used to branch the execution process in a PSQL
module. The condition is always enclosed in parentheses. If it returns the value TRUE, execution
branches to the statement or the block of statements after the keyword THEN. If an ELSE is present
and the condition returns FALSE or UNKNOWN, execution branches to the statement or the block of
statements after it.

Chapter 7. Procedural SQL (PSQL) Statements

292

Multi-branch Jumps

PSQL does not provide multi-branch jumps, such as CASE or SWITCH. Nevertheless, the CASE
search statement from DSQL is available in PSQL and is able to satisfy at least some use cases
in the manner of a switch:

CASE <test_expr>
Ê WHEN <expr> THEN <result>
Ê [WHEN <expr> THEN <result> ...]
Ê [ELSE <defaultresult>]
END

CASE
Ê WHEN <bool_expr> THEN <result>
Ê [WHEN <bool_expr> THEN <result> ...]
Ê [ELSE <defaultresult>]
END

Example in PSQL

...
C = CASE
Ê WHEN A=2 THEN 1
Ê WHEN A=1 THEN 3
Ê ELSE 0
Ê END;
...

Example

An example using the IF statement. Assume that the FIRST, LINE2 and LAST variables were declared
earlier.

...
IF (FIRST IS NOT NULL) THEN
Ê LINE2 = FIRST || ' ' || LAST;
ELSE
Ê LINE2 = LAST;
...

See also

WHILE É DO, CASE

7.6.6. WHILE É DO

Used for

Chapter 7. Procedural SQL (PSQL) Statements

293

Looping constructs

Available in

PSQL

Syntax

WHILE <condition> DO
Ê <compound_statement>

Table 85. WHILE É DO Parameters

Argument Description

condition A logical condition returning TRUE, FALSE or UNKNOWN

single_statement A single statement terminated with a semicolon

compound_statement Two or more statements wrapped in BEGIN É END

A WHILE statement implements the looping construct in PSQL. The statement or the block of
statements will be executed until the condition returns TRUE. Loops can be nested to any depth.

Example

A procedure calculating the sum of numbers from 1 to I shows how the looping construct is used.

CREATE PROCEDURE SUM_INT (I INTEGER)
RETURNS (S INTEGER)
AS
BEGIN
Ê s = 0;
Ê WHILE (i > 0) DO
Ê BEGIN
Ê s = s + i;
Ê i = i - 1;
Ê END
END

Executing the procedure in isql :

EXECUTE PROCEDURE SUM_INT(4);

the result is:

S
==========
10

Chapter 7. Procedural SQL (PSQL) Statements

294

See also

IF É THEN É ELSE, LEAVE, EXIT, FOR SELECT, FOR EXECUTE STATEMENT

7.6.7. LEAVE

Used for

Terminating a loop

Available in

PSQL

Syntax

[label :]
<loop_stmt>
BEGIN
Ê ...
Ê LEAVE [label];
Ê ...
END

<loop_stmt> ::=
Ê FOR <select_stmt> INTO <var_list> DO
Ê | FOR EXECUTE STATEMENT ... INTO <var_list> DO
Ê | WHILE (<condition>)} DO

Table 86. LEAVE Statement Parameters

Argument Description

label Label

select_stmt SELECT statement

condition A logical condition returning TRUE, FALSE or UNKNOWN

A LEAVE statement immediately terminates the inner loop of a WHILE or FOR looping statement. The
label parameter is optional.

LEAVE can cause an exit from outer loops as well. Code continues to be executed from the first
statement after the termination of the outer loop block.

Examples

1. Leaving a loop if an error occurs on an insert into the NUMBERS table. The code continues to be
executed from the line C = 0.

Chapter 7. Procedural SQL (PSQL) Statements

295

...
WHILE (B < 10) DO
BEGIN
Ê INSERT INTO NUMBERS(B)
Ê VALUES (:B);
Ê B = B + 1;
Ê WHEN ANY DO
Ê BEGIN
Ê EXECUTE PROCEDURE LOG_ERROR (
Ê CURRENT_TIMESTAMP,
Ê 'ERROR IN B LOOP');
Ê LEAVE;
Ê END
END
C = 0;
...

2. An example using labels in the LEAVE statement. LEAVE LOOPA terminates the outer loop and LEAVE
LOOPB terminates the inner loop. Note that the plain LEAVE statement would be enough to
terminate the inner loop.

...
STMT1 = 'SELECT NAME FROM FARMS';
LOOPA:
FOR EXECUTE STATEMENT :STMT1
INTO :FARM DO
BEGIN
Ê STMT2 = 'SELECT NAME ' || 'FROM ANIMALS WHERE FARM = ''';
Ê LOOPB:
Ê FOR EXECUTE STATEMENT :STMT2 || :FARM || ''''
Ê INTO :ANIMAL DO
Ê BEGIN
Ê IF (ANIMAL = 'FLUFFY') THEN
Ê LEAVE LOOPB;
Ê ELSE IF (ANIMAL = FARM) THEN
Ê LEAVE LOOPA;
Ê ELSE
Ê SUSPEND;
Ê END
END
...

See also

EXIT

Chapter 7. Procedural SQL (PSQL) Statements

296

7.6.8. EXIT

Used for

Terminating module execution

Available in

PSQL

Syntax

EXIT

The EXIT statement causes execution of the procedure or trigger to jump to the final END statement
from any point in the code, thus terminating the program.

Example

Using the EXIT statement in a selectable procedure:

CREATE PROCEDURE GEN_100
RETURNS (
Ê I INTEGER
)
AS
BEGIN
Ê I = 1;
Ê WHILE (1=1) DO
Ê BEGIN
Ê SUSPEND;
Ê IF (I=100) THEN
Ê EXIT;
Ê I = I + 1;
Ê END
END

See also

LEAVE, SUSPEND

7.6.9. SUSPEND

Used for

Passing output to the buffer and suspending execution while waiting for caller to fetch it

Available in

PSQL

Chapter 7. Procedural SQL (PSQL) Statements

297

Syntax

SUSPEND

The SUSPEND statement is used in a selectable stored procedure to pass the values of output
parameters to a buffer and suspend execution. Execution remains suspended until the calling
application fetches the contents of the buffer. Execution resumes from the statement directly after
the SUSPEND statement. In practice, this is likely to be a new iteration of a looping process.

"

Important Notes

1. Applications using interfaces that wrap the API perform the fetches from
selectable procedures transparently.

2. When a SUSPEND statement is executed in an executable stored procedure, it is
the same as executing the EXIT statement, resulting in immediate termination
of the procedure.

3. SUSPENDÒbreaksÓ the atomicity of the block in which it is located. If an error
occurs in a selectable procedure, statements executed after the final SUSPEND
statement will be rolled back. Statements that executed before the final SUSPEND
statement will not be rolled back unless the transaction is rolled back.

Example

Using the SUSPEND statement in a selectable procedure:

CREATE PROCEDURE GEN_100
RETURNS (
Ê I INTEGER
)
AS
BEGIN
Ê I = 1;
Ê WHILE (1=1) DO
Ê BEGIN
Ê SUSPEND;
Ê IF (I=100) THEN
Ê EXIT;
Ê I = I + 1;
Ê END
END

See also

EXIT

7.6.10. EXECUTE STATEMENT

Used for

Executing dynamically created SQL statements

Chapter 7. Procedural SQL (PSQL) Statements

298

Available in

PSQL

Syntax

<execute_statement> ::= EXECUTE STATEMENT <argument>
Ê [<option> É]
Ê [INTO <variables>]

<argument> ::= <paramless_stmt>
Ê | (<paramless_stmt>)
Ê | (<stmt_with_params>) (<param_values>)

<param_values> ::= <named_values> | <positional_values>

<named_values> ::= paramname := <value_expr>
Ê [, paramname := <value_expr> ...]

<positional_values> ::= <value_expr> [, <value_expr> ...]

<option> ::= WITH {AUTONOMOUS | COMMON} TRANSACTION
Ê | WITH CALLER PRIVILEGES
Ê | AS USER user
Ê | PASSWORD password
Ê | ROLE role
Ê | ON EXTERNAL [DATA SOURCE] <connect_string>

<connect_string> ::= [<hostspec>] { filepath | db_alias }

<hostspec> ::= <tcpip_hostspec> | <NamedPipes_hostspec>

<tcpip_hostspec> ::= hostname[/ port]:

<NamePipes_hostspec> ::= \\ hostname\

<variables> ::= [:] varname [, [:] varname ...]

Table 87. EXECUTE STATEMENT Statement Parameters

Argument Description

paramless_stmt Literal string or variable containing a non-parameterized SQL query

stmt_with_params Literal string or variable containing a parameterized SQL query

paramname SQL query parameter name

value_expr SQL expression resolving to a value

user User name. It can be a string, CURRENT_USER or a string variable

password Password. It can be a string or a string variable

role Role. It can be a string, CURRENT_ROLE or a string variable

Chapter 7. Procedural SQL (PSQL) Statements

299

Argument Description

connection_string Connection string. It can be a string or a string variable

filepath Path to the primary database file

db_alias Database alias

hostname Computer name or IP address

varname Variable

The statement EXECUTE STATEMENT takes a string parameter and executes it as if it were a DSQL
statement. If the statement returns data, it can be passed to local variables by way of an INTO clause.

Parameterized Statements

You can use parameters!Ñ!either named or positional!Ñ!in the DSQL statement string. Each
parameter must be assigned a value.

Special Rules for Parameterized Statements

1. Named and positional parameters cannot be mixed in one query

2. If the statement has parameters, they must be enclosed in parentheses when EXECUTE STATEMENT
is called, regardless of whether they come directly as strings, as variable names or as
expressions

3. Each named parameter must be prefixed by a colon (Ô : Õ) in the statement string itself, but not
when the parameter is assigned a value

4. Positional parameters must be assigned their values in the same order as they appear in the
query text

5. The assignment operator for parameters is the special operator Ò :=Ó, similar to the assignment
operator in Pascal

6. Each named parameter can be used in the statement more than once, but its value must be
assigned only once

7. With positional parameters, the number of assigned values must match the number of
parameter placeholders (question marks) in the statement exactly

8. A named parameter in the statement text can only be a regular identifier (it cannot be a quoted
identifier)

Examples of EXECUTE STATEMENT with parameters

With named parameters:

Chapter 7. Procedural SQL (PSQL) Statements

300

...
DECLARE license_num VARCHAR(15);
DECLARE connect_string VARCHAR (100);
DECLARE stmt VARCHAR (100) =
Ê 'SELECT license
Ê FROM cars
Ê WHERE driver = :driver AND location = :loc';
BEGIN
Ê ...
Ê SELECT connstr
Ê FROM databases
Ê WHERE cust_id = :id
Ê INTO connect_string;
Ê ...
Ê FOR
Ê SELECT id
Ê FROM drivers
Ê INTO current_driver
Ê DO
Ê BEGIN
Ê FOR
Ê SELECT location
Ê FROM driver_locations
Ê WHERE driver_id = :current_driver
Ê INTO current_location
Ê DO
Ê BEGIN
Ê ...
Ê EXECUTE STATEMENT (stmt)
Ê (driver := current_driver,
Ê loc := current_location)
Ê ON EXTERNAL connect_string
Ê INTO license_num;
Ê ...

The same code with positional parameters:

Chapter 7. Procedural SQL (PSQL) Statements

301

DECLARE license_num VARCHAR (15);
DECLARE connect_string VARCHAR (100);
DECLARE stmt VARCHAR (100) =
Ê 'SELECT license
Ê FROM cars
Ê WHERE driver = ? AND location = ?';
BEGIN
Ê ...
Ê SELECT connstr
Ê FROM databases
Ê WHERE cust_id = :id
Ê into connect_string;
Ê ...
Ê FOR
Ê SELECT id
Ê FROM drivers
Ê INTO current_driver
Ê DO
Ê BEGIN
Ê FOR
Ê SELECT location
Ê FROM driver_locations
Ê WHERE driver_id = :current_driver
Ê INTO current_location
Ê DO
Ê BEGIN
Ê ...
Ê EXECUTE STATEMENT (stmt)
Ê (current_driver, current_location)
Ê ON EXTERNAL connect_string
Ê INTO license_num;
Ê ...

WITH {AUTONOMOUS | COMMON} TRANSACTION

Traditionally, the executed SQL statement always ran within the current transaction, and this is still
the default. WITH AUTONOMOUS TRANSACTION causes a separate transaction to be started, with the same
parameters as the current transaction. It will be committed if the statement runs to completion
without errors and rolled back otherwise. WITH COMMON TRANSACTION uses the current transaction if
possible.

If the statement must run in a separate connection, an already started transaction within that
connection is used, if available. Otherwise, a new transaction is started with the same parameters
as the current transaction. Any new transactions started under the Ò COMMONÓ regime are committed
or rolled back with the current transaction.

WITH CALLER PRIVILEGES

By default, the SQL statement is executed with the privileges of the current user. Specifying WITH
CALLER PRIVILEGES adds to this the privileges of the calling procedure or trigger, just as if the

Chapter 7. Procedural SQL (PSQL) Statements

302

statement were executed directly by the routine. WITH CALLER PRIVILEGES has no effect if the ON
EXTERNAL clause is also present.

ON EXTERNAL [DATA SOURCE]

With ON EXTERNAL [DATA SOURCE], the SQL statement is executed in a separate connection to the same
or another database, possibly even on another server. If the connect string is NULL or Ò '' Ó (empty
string), the entire ON EXTERNAL [DATA SOURCE] clause is considered absent and the statement is
executed against the current database.

Connection Pooling

¥ External connections made by statements WITH COMMON TRANSACTION (the default) will remain
open until the current transaction ends. They can be reused by subsequent calls to EXECUTE
STATEMENT, but only if the connect string is exactly the same, including case

¥ External connections made by statements WITH AUTONOMOUS TRANSACTION are closed as soon as the
statement has been executed

¥ Notice that statements WITH AUTONOMOUS TRANSACTION can and will re-use connections that were
opened earlier by statements WITH COMMON TRANSACTION. If this happens, the reused connection
will be left open after the statement has been executed. (It must be, because it has at least one
un-committed transaction!)

Transaction Pooling

¥ If WITH COMMON TRANSACTION is in effect, transactions will be reused as much as possible. They will
be committed or rolled back together with the current transaction

¥ If WITH AUTONOMOUS TRANSACTION is specified, a fresh transaction will always be started for the
statement. This transaction will be committed or rolled back immediately after the statementÕs
execution

Exception Handling

When ON EXTERNAL is used, the extra connection is always made via a so-called external provider,
even if the connection is to the current database. One of the consequences is that exceptions cannot
be caught in the usual way. Every exception caused by the statement is wrapped in either an
eds_connection or an eds_statement error. In order to catch them in your PSQL code, you have to use
WHEN GDSCODE eds_connection, WHEN GDSCODE eds_statement or WHEN ANY.

! Without ON EXTERNAL, exceptions are caught in the usual way, even if an extra
connection is made to the current database.

Miscellaneous Notes

¥ The character set used for the external connection is the same as that for the current connection

¥ Two-phase commits are not supported

Chapter 7. Procedural SQL (PSQL) Statements

303

AS USER, PASSWORD and ROLE

The optional AS USER, PASSWORD and ROLE clauses allow specificaton of which user will execute the
SQL statement and with which role. The method of user log-in and whether a separate connection
is open depend on the presence and values of the ON EXTERNAL [DATA SOURCE], AS USER, PASSWORD and
ROLE clauses:

¥ If ON EXTERNAL is present, a new connection is always opened, and:

" If at least one of AS USER, PASSWORD and ROLE is present, native authentication is attempted
with the given parameter values (locally or remotely, depending on the connect string). No
defaults are used for missing parameters

" If all three are absent and the connect string contains no hostname, then the new
connection is established on the local host with the same user and role as the current
connection. The term 'local' means Òon the same machine as the serverÓ here. This is not
necessarily the location of the client

" If all three are absent and the connect string contains a hostname, then trusted
authentication is attempted on the remote host (again, 'remote' from the perspective of the
server). If this succeeds, the remote operating system will provide the user name (usually
the operating system account under which the Firebird process runs)

¥ If ON EXTERNAL is absent:

" If at least one of AS USER, PASSWORD and ROLE is present, a new connection to the current
database is opened with the suppled parameter values. No defaults are used for missing
parameters

" If all three are absent, the statement is executed within the current connection

!
Notice

If a parameter value is NULL or Ò '' Ó (empty string), the entire parameter is
considered absent. Additionally, AS USER is considered absent if its value is equal to
CURRENT_USER, and ROLE if it is the same as CURRENT_ROLE.

Caveats with EXECUTE STATEMENT

1. There is no way to validate the syntax of the enclosed statement

2. There are no dependency checks to discover whether tables or columns have been dropped

3. Even though the performance in loops has been significantly improved in Firebird 2.5,
execution is still considerably slower than when the same statements are launched directly

4. Return values are strictly checked for data type in order to avoid unpredictable type-casting
exceptions. For example, the string '1234' would convert to an integer, 1234, but 'abc' would
give a conversion error

All in all, this feature is meant to be used very cautiously and you should always take the caveats
into account. If you can achieve the same result with PSQL and/or DSQL, it will almost always be
preferable.

See also

Chapter 7. Procedural SQL (PSQL) Statements

304

FOR EXECUTE STATEMENT

7.6.11. FOR SELECT

Used for

Looping row-by-row through a selected result set

Available in

PSQL

Syntax

FOR <select_stmt> [AS CURSOR cursorname]
Ê DO <compound_statement>

Table 88. FOR SELECT Statement Parameters

Argument Description

select_stmt SELECT statement

cursorname Cursor name. It must be unique among cursor names in the PSQL module
(stored procedure, trigger or PSQL block)

single_statement A single statement, terminated with a colon, that performs all the
processing for this FOR loop

compound_statement A block of statements wrapped in BEGINÉEND, that performs all the
processing for this FOR loop

A FOR SELECT statement

¥ retrieves each row sequentially from the result set and executes the statement or block of
statements on the row. In each iteration of the loop, the field values of the current row are
copied into pre-declared variables.

Including the AS CURSOR clause enables positioned deletes and updates to be performed!Ñ!see
notes below

¥ can embed other FOR SELECT statements

¥ can carry named parameters that must be previously declared in the DECLARE VARIABLE
statement or exist as input or output parameters of the procedure

¥ requires an INTO clause that is located at the end of the SELECT É FROM É specification. In each
iteration of the loop, the field values in the current row are copied to the list of variables
specified in the INTO clause. The loop repeats until all rows are retrieved, after which it
terminates

¥ can be terminated before all rows are retrieved by using a LEAVE statement

The Undeclared Cursor

The optional AS CURSOR clause surfaces the set in the FOR SELECT structure as an undeclared, named

Chapter 7. Procedural SQL (PSQL) Statements

305

cursor that can be operated on using the WHERE CURRENT OF clause inside the statement or block
following the DO command, in order to delete or update the current row before execution moves to
the next iteration.

Other points to take into account regarding undeclared cursors:

1. the OPEN, FETCH and CLOSE statements cannot be applied to a cursor surfaced by the AS CURSOR
clause

2. the cursor name argument associated with an AS CURSOR clause must not clash with any names
created by DECLARE VARIABLE or DECLARE CURSOR statements at the top of the body code, nor with
any other cursors surfaced by an AS CURSOR clause

3. The optional FOR UPDATE clause in the SELECT statement is not required for a positioned update

Examples using FOR SELECT

1. A simple loop through query results:

CREATE PROCEDURE SHOWNUMS
RETURNS (
Ê AA INTEGER,
Ê BB INTEGER,
Ê SM INTEGER,
Ê DF INTEGER)
AS
BEGIN
Ê FOR SELECT DISTINCT A, B
Ê FROM NUMBERS
Ê ORDER BY A, B
Ê INTO AA, BB
Ê DO
Ê BEGIN
Ê SM = AA + BB;
Ê DF = AA - BB;
Ê SUSPEND;
Ê END
END

2. Nested FOR SELECT loop:

Chapter 7. Procedural SQL (PSQL) Statements

306

CREATE PROCEDURE RELFIELDS
RETURNS (
Ê RELATION CHAR(32),
Ê POS INTEGER,
Ê FIELD CHAR(32))
AS
BEGIN
Ê FOR SELECT RDB$RELATION_NAME
Ê FROM RDB$RELATIONS
Ê ORDER BY 1
Ê INTO :RELATION
Ê DO
Ê BEGIN
Ê FOR SELECT
Ê RDB$FIELD_POSITION + 1,
Ê RDB$FIELD_NAME
Ê FROM RDB$RELATION_FIELDS
Ê WHERE
Ê RDB$RELATION_NAME = :RELATION
Ê ORDER BY RDB$FIELD_POSITION
Ê INTO :POS, :FIELD
Ê DO
Ê BEGIN
Ê IF (POS = 2) THEN
Ê RELATION = ' "';

Ê SUSPEND;
Ê END
Ê END
END

3. Using the AS CURSOR clause to surface a cursor for the positioned delete of a record:

Chapter 7. Procedural SQL (PSQL) Statements

307

CREATE PROCEDURE DELTOWN (
Ê TOWNTODELETE VARCHAR(24))
RETURNS (
Ê TOWN VARCHAR(24),
Ê POP INTEGER)
AS
BEGIN
Ê FOR SELECT TOWN, POP
Ê FROM TOWNS
Ê INTO :TOWN, :POP AS CURSOR TCUR
Ê DO
Ê BEGIN
Ê IF (:TOWN = :TOWNTODELETE) THEN
Ê -- Positional delete
Ê DELETE FROM TOWNS
Ê WHERE CURRENT OF TCUR;
Ê ELSE
Ê SUSPEND;
Ê END
END

See also

DECLARE CURSOR, LEAVE, SELECT, UPDATE, DELETE

7.6.12. FOR EXECUTE STATEMENT

Used for

Executing dynamically created SQL statements that return a row set

Available in

PSQL

Syntax

FOR <execute_statement> DO <compound_statement>

Table 89. FOR EXECUTE STATEMENT Statement Parameters

Argument Description

execute_stmt An EXECUTE STATEMENT statement

single_statement A single statement, terminated with a colon, that performs all the
processing for this FOR loop

compound_statement A block of statements wrapped in BEGINÉEND, that performs all the
processing for this FOR loop

The statement FOR EXECUTE STATEMENT is used, in a manner analogous to FOR SELECT, to loop through
the result set of a dynamically executed query that returns multiple rows.

Chapter 7. Procedural SQL (PSQL) Statements

308

Example

Executing a dynamically constructed SELECT query that returns a data set:

CREATE PROCEDURE DynamicSampleThree (
Ê Q_FIELD_NAME VARCHAR(100),
Ê Q_TABLE_NAME VARCHAR(100)
) RETURNS(
Ê LINE VARCHAR(32000)
)
AS
Ê DECLARE VARIABLE P_ONE_LINE VARCHAR(100);
BEGIN
Ê LINE = '';
Ê FOR
Ê EXECUTE STATEMENT
Ê 'SELECT T1.' || :Q_FIELD_NAME ||
Ê ' FROM ' || :Q_TABLE_NAME || ' T1 '
Ê INTO :P_ONE_LINE
Ê DO
Ê IF (:P_ONE_LINE IS NOT NULL) THEN
Ê LINE = :LINE || :P_ONE_LINE || ' ';
Ê SUSPEND;
END

See also

EXECUTE STATEMENT

7.6.13. OPEN

Used for

Opening a declared cursor

Available in

PSQL

Syntax

OPEN cursorname

Table 90. OPEN Statement Parameter

Argument Description

cursorname Cursor name. A cursor with this name must be previously declared with a
DECLARE CURSOR statement

An OPEN statement opens a previously declared cursor, executes the SELECT statement declared for it
and makes the first record of the result data set ready to fetch. OPEN can be applied only to cursors
previously declared in a DECLARE VARIABLE statement.

Chapter 7. Procedural SQL (PSQL) Statements

309

!
If the SELECT statement declared for the cursor has parameters, they must be
declared as local variables or exist as input or output parameters before the cursor
is declared. When the cursor is opened, the parameter is assigned the current
value of the variable.

Examples

1. Using the OPEN statement:

SET TERM ^;

CREATE OR ALTER PROCEDURE GET_RELATIONS_NAMES
RETURNS (
Ê RNAME CHAR(31)
)
AS
Ê DECLARE C CURSOR FOR (
Ê SELECT RDB$RELATION_NAME
Ê FROM RDB$RELATIONS);
BEGIN
Ê OPEN C;
Ê WHILE (1 = 1) DO
Ê BEGIN
Ê FETCH C INTO :RNAME;
Ê IF (ROW_COUNT = 0) THEN
Ê LEAVE;
Ê SUSPEND;
Ê END
Ê CLOSE C;
END^

SET TERM ;^

2. A collection of scripts for creating views using a PSQL block with named cursors:

EXECUTE BLOCK
RETURNS (
Ê SCRIPT BLOB SUB_TYPE TEXT)
AS
Ê DECLARE VARIABLE FIELDS VARCHAR(8191);
Ê DECLARE VARIABLE FIELD_NAME TYPE OF RDB$FIELD_NAME;
Ê DECLARE VARIABLE RELATION RDB$RELATION_NAME;
Ê DECLARE VARIABLE SOURCE TYPE OF COLUMN RDB$RELATIONS.RDB$VIEW_SOURCE;
Ê -- named cursor
Ê DECLARE VARIABLE CUR_R CURSOR FOR (
Ê SELECT
Ê RDB$RELATION_NAME,
Ê RDB$VIEW_SOURCE
Ê FROM

Chapter 7. Procedural SQL (PSQL) Statements

310

Ê RDB$RELATIONS
Ê WHERE
Ê RDB$VIEW_SOURCE IS NOT NULL);
Ê -- named cursor with local variable
Ê DECLARE CUR_F CURSOR FOR (
Ê SELECT
Ê RDB$FIELD_NAME
Ê FROM
Ê RDB$RELATION_FIELDS
Ê WHERE
Ê -- Important! The variable shall be declared earlier
Ê RDB$RELATION_NAME = :RELATION);
BEGIN
Ê OPEN CUR_R;
Ê WHILE (1 = 1) DO
Ê BEGIN
Ê FETCH CUR_R
Ê INTO :RELATION, :SOURCE;
Ê IF (ROW_COUNT = 0) THEN
Ê LEAVE;

Ê FIELDS = NULL;
Ê -- The CUR_F cursor will use
Ê -- variable value of RELATION initialized above
Ê OPEN CUR_F;
Ê WHILE (1 = 1) DO
Ê BEGIN
Ê FETCH CUR_F
Ê INTO :FIELD_NAME;
Ê IF (ROW_COUNT = 0) THEN
Ê LEAVE;
Ê IF (FIELDS IS NULL) THEN
Ê FIELDS = TRIM(FIELD_NAME);
Ê ELSE
Ê FIELDS = FIELDS || ', ' || TRIM(FIELD_NAME);
Ê END
Ê CLOSE CUR_F;

Ê SCRIPT = 'CREATE VIEW ' || RELATION;

Ê IF (FIELDS IS NOT NULL) THEN
Ê SCRIPT = SCRIPT || ' (' || FIELDS || ')';

Ê SCRIPT = SCRIPT || ' AS ' || ASCII_CHAR(13);
Ê SCRIPT = SCRIPT || SOURCE;

Ê SUSPEND;
Ê END
Ê CLOSE CUR_R;
END

Chapter 7. Procedural SQL (PSQL) Statements

311

See also

DECLARE CURSOR, FETCH, CLOSE

7.6.14. FETCH

Used for

Fetching successive records from a data set retrieved by a cursor

Available in

PSQL

Syntax

FETCH cursorname INTO [:] varname [, [:] varname ...]

Table 91. FETCH Statement Parameters

Argument Description

cursorname Cursor name. A cursor with this name must be previously declared with a
DECLARE CURSOR statement and opened by an OPEN statement.

varname Variable name

A FETCH statement fetches the first and successive rows from the result set of the cursor and assigns
the column values to PSQL variables. The FETCH statement can be used only with a cursor declared
with the DECLARE CURSOR statement.

The INTO clause gets data from the current row of the cursor and loads them into PSQL variables.

For checking whether all of the the data set rows have been fetched, the context variable ROW_COUNT
returns the number of rows fetched by the statement. It is positive until all rows have been
checked. A ROW_COUNT of 1 indicates that the next fetch will be the last.

Example

Using the FETCH statement:

Chapter 7. Procedural SQL (PSQL) Statements

312

SET TERM ^;

CREATE OR ALTER PROCEDURE GET_RELATIONS_NAMES
RETURNS (
Ê RNAME CHAR(31)
)
AS
Ê DECLARE C CURSOR FOR (
Ê SELECT RDB$RELATION_NAME
Ê FROM RDB$RELATIONS);
BEGIN
Ê OPEN C;
Ê WHILE (1 = 1) DO
Ê BEGIN
Ê FETCH C INTO :RNAME;
Ê IF (ROW_COUNT = 0) THEN
Ê LEAVE;
Ê SUSPEND;
Ê END
Ê CLOSE C;
END^

SET TERM ;^

See also

DECLARE CURSOR, OPEN, CLOSE

7.6.15. CLOSE

Used for

Closing a declared cursor

Available in

PSQL

Syntax

CLOSE cursorname

Table 92. CLOSE Statement Parameter

Argument Description

cursorname Cursor name. A cursor with this name must be previously declared with a
DECLARE CURSOR statement and opened by an OPEN statement

A CLOSE statement closes an open cursor. Any cursors that are still open will be automatically closed
after the module code completes execution. Only a cursor that was declared with DECLARE CURSOR
can be closed with a CLOSE statement.

Chapter 7. Procedural SQL (PSQL) Statements

313

Example

Using the CLOSE statement:

SET TERM ^;

CREATE OR ALTER PROCEDURE GET_RELATIONS_NAMES
RETURNS (
Ê RNAME CHAR(31)
)
AS
Ê DECLARE C CURSOR FOR (
Ê SELECT RDB$RELATION_NAME
Ê FROM RDB$RELATIONS);
BEGIN
Ê OPEN C;
Ê WHILE (1 = 1) DO
Ê BEGIN
Ê FETCH C INTO :RNAME;
Ê IF (ROW_COUNT = 0) THEN
Ê LEAVE;
Ê SUSPEND;
Ê END
Ê CLOSE C;
END^

See also

DECLARE CURSOR, OPEN, FETCH

7.6.16. IN AUTONOMOUS TRANSACTION

Used for

Executing a statement or a block of statements in an autonomous transaction

Available in

PSQL

Syntax

IN AUTONOMOUS TRANSACTION DO <compound_statement>

Table 93. IN AUTONOMOUS TRANSACTION Statement Parameter

Argument Description

compound_statement A statement or a block of statements

An IN AUTONOMOUS TRANSACTION statement enables execution of a statement or a block of statements
in an autonomous transaction. Code running in an autonomous transaction will be committed right
after its successful execution, regardless of the status of its parent transaction. It might be needed

Chapter 7. Procedural SQL (PSQL) Statements

314

when certain operations must not be rolled back, even if an error occurs in the parent transaction.

An autonomous transaction has the same isolation level as its parent transaction. Any exception
that is thrown in the block of the autonomous transaction code will result in the autonomous
transaction being rolled back and all made changes being cancelled. If the code executes
successfully, the autonomous transaction will be committed.

Example

Using an autonomous transaction in a trigger for the database ON CONNECT event, in order to log all
connection attempts, including those that failed:

CREATE TRIGGER TR_CONNECT ON CONNECT
AS
BEGIN
Ê -- Logging all attempts to connect to the database
Ê IN AUTONOMOUS TRANSACTION DO
Ê INSERT INTO LOG(MSG)
Ê VALUES ('USER ' || CURRENT_USER || ' CONNECTS.');
Ê IF (CURRENT_USER IN (SELECT
Ê USERNAME
Ê FROM
Ê BLOCKED_USERS)) THEN
Ê BEGIN
Ê -- Logging that the attempt to connect
Ê -- to the database failed and sending
Ê -- a message about the event
Ê IN AUTONOMOUS TRANSACTION DO
Ê BEGIN
Ê INSERT INTO LOG(MSG)
Ê VALUES ('USER ' || CURRENT_USER || ' REFUSED.');
Ê POST_EVENT 'CONNECTION ATTEMPT' || ' BY BLOCKED USER!';
Ê END
Ê -- now calling an exception
Ê EXCEPTION EX_BADUSER;
Ê END
END

See also

Transsaction Control

7.6.17. POST_EVENT

Used for

Notifying listening clients about database events in a module

Available in

PSQL

Chapter 7. Procedural SQL (PSQL) Statements

315

Syntax

POST_EVENT event_name

Table 94. POST_EVENT Statement Parameter

Argument Description

event_name Event name (message) limited to 127 bytes

The POST_EVENT statement notifies the event manager about the event, which saves it to an event
table. When the transaction is committed, the event manager notifies applications that are
signalling their interest in the event.

The event name can be some sort of code or a short message: the choice is open as it is just a string
up to 127 bytes.

The content of the string can be a string literal, a variable or any valid SQL expression that resolves
to a string.

Example

Notifying the listening applications about inserting a record into the SALES table:

SET TERM ^;
CREATE TRIGGER POST_NEW_ORDER FOR SALES
ACTIVE AFTER INSERT POSITION 0
AS
BEGIN
Ê POST_EVENT 'new_order';
END^
SET TERM ;^

7.7. Trapping and Handling Errors
Firebird has a useful lexicon of PSQL statements and resources for trapping errors in modules and
for handling them. Internally-implemented exceptions exist for stalling execution when every sort
of standard error occurs in DDL, DSQL and the physical environment.

In PSQL code, exceptions are handled by means of the WHEN statement. Handling an exception in
the code involves either fixing the problem in situ, or stepping past it; either solution allows
execution to continue without returning an exception message to the client.

An exception results in execution being terminated in the block. Instead of passing the execution to
the END statement, the procedure moves outward through levels of nested blocks, starting from the
block where the exception is caught, searching for the code of the handler that ÒknowsÓ about this
exception. It stops searching when it finds the first WHEN statement that can handle this exception.

Chapter 7. Procedural SQL (PSQL) Statements

316

7.7.1. System Exceptions

An exception is a message that is generated when an error occurs.

All exceptions handled by Firebird have predefined numeric values for context variables (symbols)
and text messages associated with them. Error messages are output in English by default. Localized
Firebird builds are available, where error messages are translated into other languages.

Complete listings of the system exceptions can be found in Appendix B: Exception Codes and
Messages:

¥ SQLSTATE Error Codes and Descriptions

¥ "GDSCODE Error Codes, SQLCODEs and Descriptions"

7.7.2. Custom Exceptions

Custom exceptions can be declared in the database as persistent objects and called in the PSQL code
to signal specific errors; for instance, to enforce certain business rules. A custom exception consists
of an identifier and a default message of approximately 1000 bytes. For details, see CREATE
EXCEPTION.

7.7.3. EXCEPTION

Used for

Throwing a user-defined exception or re-throwing an exception

Available in

PSQL

Syntax

EXCEPTION [exception_name [custom_message]]

Table 95. EXCEPTION Statement Parameters

Argument Description

exception_name Exception name

custom_message Alternative message text to be returned to the caller interface when an
exception is thrown. Maximum length of the text message is 1,021 bytes

An EXCEPTION statement throws the user-defined exception with the specified name. An alternative
message text of up to 1,021 bytes can optionally override the exceptionÕs default message text.

The exception can be handled in the statement, by just leaving it with no specific WHEN É DO
handler and allowing the trigger or stored procedure to terminate and roll back all operations. The
calling application gets the alternative message text, if any was specified; otherwise, it receives the
message originally defined for that exception.

Within the exception-handling block!Ñ!and only within it!Ñ!the caught exception can be re-thrown

Chapter 7. Procedural SQL (PSQL) Statements

317

by executing the EXCEPTION statement without parameters. If located outside the block, the re-
thrown EXCEPTION call has no effect.

! Custom exceptions are stored in the system table RDB$EXCEPTIONS.

Examples

1. Throwing an exception with dynamically generated text:

É
EXCEPTION EX_BAD_TYPE
Ê 'Incorrect record type with id ' || new.id;
É

2. Throwing an exception upon a condition in the SHIP_ORDER stored procedure:

CREATE OR ALTER PROCEDURE SHIP_ORDER (
Ê PO_NUM CHAR(8))
AS
Ê DECLARE VARIABLE ord_stat CHAR(7);
Ê DECLARE VARIABLE hold_stat CHAR(1);
Ê DECLARE VARIABLE cust_no INTEGER;
Ê DECLARE VARIABLE any_po CHAR(8);
BEGIN
Ê SELECT
Ê s.order_status,
Ê c.on_hold,
Ê c.cust_no
Ê FROM
Ê sales s, customer c
Ê WHERE
Ê po_number = :po_num AND
Ê s.cust_no = c.cust_no
Ê INTO :ord_stat,
Ê :hold_stat,
Ê :cust_no;

Ê IF (ord_stat = 'shipped') THEN
Ê EXCEPTION order_already_shipped;
Ê /* Other statements */
END

3. Throwing an exception upon a condition and replacing the original message with an alternative
message:

Chapter 7. Procedural SQL (PSQL) Statements

318

CREATE OR ALTER PROCEDURE SHIP_ORDER (
Ê PO_NUM CHAR(8))
AS
Ê DECLARE VARIABLE ord_stat CHAR(7);
Ê DECLARE VARIABLE hold_stat CHAR(1);
Ê DECLARE VARIABLE cust_no INTEGER;
Ê DECLARE VARIABLE any_po CHAR(8);
BEGIN
Ê SELECT
Ê s.order_status,
Ê c.on_hold,
Ê c.cust_no
Ê FROM
Ê sales s, customer c
Ê WHERE
Ê po_number = :po_num AND
Ê s.cust_no = c.cust_no
Ê INTO :ord_stat,
Ê :hold_stat,
Ê :cust_no;

Ê IF (ord_stat = 'shipped') THEN
Ê EXCEPTION order_already_shipped
Ê 'Order status is "' || ord_stat || '"';
Ê /* Other statements */
END

4. Logging an error and re-throwing it in the WHEN block:

Chapter 7. Procedural SQL (PSQL) Statements

319

CREATE PROCEDURE ADD_COUNTRY (
Ê ACountryName COUNTRYNAME,
Ê ACurrency VARCHAR(10))
AS
BEGIN
Ê INSERT INTO country (country,
Ê currency)
Ê VALUES (:ACountryName,
Ê :ACurrency);
Ê WHEN ANY DO
Ê BEGIN
Ê -- write an error in log
Ê IN AUTONOMOUS TRANSACTION DO
Ê INSERT INTO ERROR_LOG (PSQL_MODULE,
Ê GDS_CODE,
Ê SQL_CODE,
Ê SQL_STATE)
Ê VALUES ('ADD_COUNTRY',
Ê GDSCODE,
Ê SQLCODE,
Ê SQLSTATE);
Ê -- Re-throw exception
Ê EXCEPTION;
Ê END
END

See also

CREATE EXCEPTION, WHEN É DO

7.7.4. WHEN É DO

Used for

Catching an exception and handling the error

Available in

PSQL

Syntax

WHEN {<error> [, <error> É] | ANY}
DO <compound_statement>

<error> ::=
Ê { EXCEPTION exception_name
Ê | SQLCODE number
Ê | GDSCODE errcode }

Table 96. WHEN É DO Statement Parameters

Chapter 7. Procedural SQL (PSQL) Statements

320

Argument Description

exception_name Exception name

number SQLCODE error code

errcode Symbolic GDSCODE error name

compound_statement A statement or a block of statements

The WHEN É DO statement is used to handle errors and user-defined exceptions. The statement
catches all errors and user-defined exceptions listed after the keyword WHEN keyword. If WHEN is
followed by the keyword ANY, the statement catches any error or user-defined exception, even if
they have already been handled in a WHEN block located higher up.

The WHEN É DO block must be located at the very end of a block of statements, before the blockÕs END
statement.

The keyword DO is followed by a statement, or a block of statements inside a BEGIN É END block, that
handle the exception. The SQLCODE, GDSCODE, and SQLSTATE context variables are available in the
context of this statement or block. The EXCEPTION statement, without parameters, can also be used in
this context to re-throw the error or exception.

Targeting GDSCODE

The argument for the WHEN GDSCODE clause is the symbolic name associated with the internally-
defined exception, such as grant_obj_notfound for GDS error 335544551.

After the DO clause, another GDSCODE context variable, containing the numeric code, becomes
available for use in the statement or the block of statements that code the error handler. That
numeric code is required if you want to compare a GDSCODE exception with a targeted error.

The WHEN É DO statement or block is never executed unless one of the events targeted by its
conditions occurs in run-time. If the statement is executed, even if it actually does nothing,
execution will continue as if no error occurred: the error or user-defined exception neither
terminates nor rolls back the operations of the trigger or stored procedure.

However, if the WHEN É DO statement or block does nothing to handle or resolve the error, the DML
statement (SELECT, INSERT, UPDATE, DELETE, MERGE) that caused the error will be rolled back and none of
the statements below it in the same block of statements are executed.

Chapter 7. Procedural SQL (PSQL) Statements

321

"

1. If the error is not caused by one of the DML statements (SELECT, INSERT, UPDATE,
DELETE, MERGE), the entire block of statements will be rolled back, not just the
one that caused an error. Any operations in the WHEN É DO statement will be
rolled back as well. The same limitation applies to the EXECUTE PROCEDURE
statement. Read an interesting discussion of the phenomenon in Firebird
Tracker ticket CORE-4483.

2. In selectable stored procedures, output rows that were already passed to the
client in previous iterations of a FOR SELECT É DO É SUSPEND loop remain
available to the client if an exception is thrown subsequently in the process of
retrieving rows.

Scope of a WHEN É DO Statement

A WHEN É DO statement catches errors and exceptions in the current block of statements. It also
catches similar exceptions in nested blocks, if those exceptions have not been handled in them.

All changes made before the statement that caused the error are visible to a WHEN É DO statement.
However, if you try to log them in an autonomous transaction, those changes are unavailable,
because the transaction where the changes took place is not committed at the point when the
autonomous transaction is started. Example 4, below, demonstrates this behaviour.

!

When handling exceptions, it is sometimes desirable to handle the exception by
writing a log message to mark the fault and having execution continue past the
faulty record. Logs can be written to regular tables but there is a problem with
that: the log records will ÒdisappearÓ if an unhandled error causes the module to
stop executing and a rollback ensues. Use of external tables can be useful here, as
data written to them is transaction-independent. The linked external file will still
be there, regardless of whether the overall process succeeds or not.

Examples using WHENÉDO

1. Replacing the standard error with a custom one:

CREATE EXCEPTION COUNTRY_EXIST '';
SET TERM ^;
CREATE PROCEDURE ADD_COUNTRY (
Ê ACountryName COUNTRYNAME,
Ê ACurrency VARCHAR(10))
AS
BEGIN
Ê INSERT INTO country (country, currency)
Ê VALUES (:ACountryName, :ACurrency);

Ê WHEN SQLCODE -803 DO
Ê EXCEPTION COUNTRY_EXIST 'Country already exists!';
END^
SET TERM ^;

Chapter 7. Procedural SQL (PSQL) Statements

322

http://tracker.firebirdsql.org/browse/CORE-4483

2. Logging an error and re-throwing it in the WHEN block:

CREATE PROCEDURE ADD_COUNTRY (
Ê ACountryName COUNTRYNAME,
Ê ACurrency VARCHAR(10))
AS
BEGIN
Ê INSERT INTO country (country,
Ê currency)
Ê VALUES (:ACountryName,
Ê :ACurrency);
Ê WHEN ANY DO
Ê BEGIN
Ê -- write an error in log
Ê IN AUTONOMOUS TRANSACTION DO
Ê INSERT INTO ERROR_LOG (PSQL_MODULE,
Ê GDS_CODE,
Ê SQL_CODE,
Ê SQL_STATE)
Ê VALUES ('ADD_COUNTRY',
Ê GDSCODE,
Ê SQLCODE,
Ê SQLSTATE);
Ê -- Re-throw exception
Ê EXCEPTION;
Ê END
END

3. Handling several errors in one WHEN block

...
WHEN GDSCODE GRANT_OBJ_NOTFOUND,
Ê GDSCODE GRANT_FLD_NOTFOUND,
Ê GDSCODE GRANT_NOPRIV,
Ê GDSCODE GRANT_NOPRIV_ON_BASE
DO
BEGIN
Ê EXECUTE PROCEDURE LOG_GRANT_ERROR(GDSCODE);
Ê EXIT;
END
...

See also

EXCEPTION, CREATE EXCEPTION, SQLCODE and GDSCODE Error Codes and Message Texts and SQLSTATE
Codes and Message Texts

Chapter 7. Procedural SQL (PSQL) Statements

323

Chapter 8. Built-in Functions

Upgraders: PLEASE READ!

A large number of functions that were implemented as external functions (UDFs) in earlier
versions of Firebird have been progressively re-implemented as internal (built-in) functions.
If some external function of the same name as a built-in one is declared in your database, it
will remain there and it will override any internal function of the same name.

To make the internal function available, you need either to DROP the UDF, or to use ALTER
EXTERNAL FUNCTION to change the declared name of the UDF.

8.1. Context Functions

8.1.1. RDB$GET_CONTEXT()

!
RDB$GET_CONTEXT and its counterpart RDB$SET_CONTEXT are actually predeclared
UDFs. They are listed here as internal functions because they are always
present!Ñ!the user doesnÕt have to do anything to make them available.

Available in

DSQL, PSQLÊ* As a declared UDF it should be available in ESQL

Syntax

RDB$GET_CONTEXT ('<namespace>', <varname>)

<namespace> ::= SYSTEM | USER_SESSION | USER_TRANSACTION
<varname> ::= A case-sensitive quoted string of max. 80 characters

Table 97. RDB$GET_CONTEXT Function Parameters

Parameter Description

namespace Namespace

varname Variable name. Case-sensitive. Maximum length is 80 characters

Result type

VARCHAR(255)

Description

Retrieves the value of a context variable from one of the namespaces SYSTEM, USER_SESSION and
USER_TRANSACTION.

The namespaces

The USER_SESSION and USER_TRANSACTION namespaces are initially empty. The user can create and set

Chapter 8. Built-in Functions

324

variables in them with RDB$SET_CONTEXT() and retrieve them with RDB$GET_CONTEXT(). The SYSTEM
namespace is read-only. It contains a number of predefined variables, shown below.

Context variables in the SYSTEM namespace

DB_NAME

Either the full path to the database or!Ñ!if connecting via the path is disallowed!Ñ!its alias.

NETWORK_PROTOCOL

The protocol used for the connection: 'TCPv4', 'WNET', 'XNET' or NULL.

CLIENT_ADDRESS

For TCPv4, this is the IP address. For XNET, the local process ID. For all other protocols this
variable is NULL.

CURRENT_USER

Same as global CURRENT_USER variable.

CURRENT_ROLE

Same as global CURRENT_ROLE variable.

SESSION_ID

Same as global CURRENT_CONNECTION variable.

TRANSACTION_ID

Same as global CURRENT_TRANSACTION variable.

ISOLATION_LEVEL

The isolation level of the current transaction: 'READ COMMITTED', 'SNAPSHOT' or 'CONSISTENCY'.

ENGINE_VERSION

The Firebird engine (server) version. Added in 2.1.

Return values and error behaviour

If the polled variable exists in the given namespace, its value will be returned as a string of max.
255 characters. If the namespace doesnÕt exist or if you try to access a non-existing variable in the
SYSTEM namespace, an error is raised. If you request a non-existing variable in one of the other
namespaces, NULL is returned. Both namespace and variable names must be given as single-quoted,
case-sensitive, non- NULL strings.

Examples

select rdb$get_context('SYSTEM', 'DB_NAME') from rdb$database

New.UserAddr = rdb$get_context('SYSTEM', 'CLIENT_ADDRESS');

insert into MyTable (TestField)
Ê values (rdb$get_context('USER_SESSION', 'MyVar'))

Chapter 8. Built-in Functions

325

See also

RDB$SET_CONTEXT()

8.1.2. RDB$SET_CONTEXT()

!
RDB$SET_CONTEXT and its counterpart RDB$GET_CONTEXT are actually predeclared
UDFs. They are listed here as internal functions because they are always
present!Ñ!the user doesnÕt have to do anything to make them available.

Available in

DSQL, PSQLÊ* As a declared UDF it should be available in ESQL

Syntax

RDB$SET_CONTEXT ('<namespace>', <varname>, <value> | NULL)

<namespace> ::= USER_SESSION | USER_TRANSACTION
<varname> ::= A case-sensitive quoted string of max. 80 characters
<value> ::= A value of any type, as long as it's castable
Ê to a VARCHAR(255)

Table 98. RDB$SET_CONTEXT Function Parameters

Parameter Description

namespace Namespace

varname Variable name. Case-sensitive. Maximum length is 80 characters

value Data of any type provided it can be cast to VARCHAR(255)

Result type

INTEGER

Description

Creates, sets or unsets a variable in one of the user-writable namespaces USER_SESSION and
USER_TRANSACTION.

The namespaces

The USER_SESSION and USER_TRANSACTION namespaces are initially empty. The user can create and set
variables in them with RDB$SET_CONTEXT() and retrieve them with RDB$GET_CONTEXT(). The
USER_SESSION context is bound to the current connection. Variables in USER_TRANSACTION only exist in
the transaction in which they have been set. When the transaction ends, the context and all the
variables defined in it are destroyed.

Return values and error behaviour

The function returns 1 when the variable already existed before the call and 0 when it didnÕt. To
remove a variable from a context, set it to NULL. If the given namespace doesnÕt exist, an error is
raised. Both namespace and variable names must be entered as single-quoted, case-sensitive, non-
NULL strings.

Chapter 8. Built-in Functions

326

Examples

select rdb$set_context('USER_SESSION', 'MyVar', 493) from rdb$database

rdb$set_context('USER_SESSION', 'RecordsFound', RecCounter);

select rdb$set_context('USER_TRANSACTION', 'Savepoints', 'Yes')
Ê from rdb$database

Notes

¥ The maximum number of variables in any single context is 1000.

¥ All USER_TRANSACTION variables will survive a ROLLBACK RETAIN (see ROLLBACK Options) or ROLLBACK
TO SAVEPOINT unaltered, no matter at which point during the transaction they were set.

¥ Due to its UDF-like nature, RDB$SET_CONTEXT can!Ñ!in PSQL only!Ñ!be called like a void function,
without assigning the result, as in the second example above. Regular internal functions donÕt
allow this type of use.

See also

RDB$GET_CONTEXT()

8.2. Mathematical Functions

8.2.1. ABS()

Available in

DSQL, PSQL

Possible name conflict

YES % Read details

Syntax

ABS (number)

Table 99. ABS Function Parameter

Parameter Description

number An expression of a numeric type

Result type

Numerical

Description

Returns the absolute value of the argument.

Chapter 8. Built-in Functions

327

8.2.2. ACOS()

Available in

DSQL, PSQL

Possible name conflict

YES % Read details

Syntax

ACOS (number)

Table 100. ACOS Function Parameter

Parameter Description

number An expression of a numeric type within the range [-1; 1]

Result type

DOUBLE PRECISION

Description

Returns the arc cosine of the argument.

¥ The result is an angle in the range [0, pi].

¥ If the argument is outside the range [-1, 1], NaN is returned.

8.2.3. ASIN()

Available in

DSQL, PSQL

Possible name conflict

YES % Read details

Syntax

ASIN (number)

Table 101. ASIN Function Parameter

Parameter Description

number An expression of a numeric type within the range [-1; 1]

Result type

DOUBLE PRECISION

Description

Returns the arc sine of the argument.

Chapter 8. Built-in Functions

328

¥ The result is an angle in the range [-pi/2, pi/2].

¥ If the argument is outside the range [-1, 1], NaN is returned.

8.2.4. ATAN()

Available in

DSQL, PSQL

Possible name conflict

YES % Read details

Syntax

ATAN (number)

Table 102. ATAN Function Parameter

Parameter Description

number An expression of a numeric type

Result type

DOUBLE PRECISION

Description

The function ATAN returns the arc tangent of the argument. The result is an angle in the range &pi/2,
pi/2>.

8.2.5. ATAN2()

Available in

DSQL, PSQL

Possible name conflict

YES % Read details

Syntax

ATAN2 (y, x)

Table 103. ATAN2 Function Parameters

Parameter Description

y An expression of a numeric type

x An expression of a numeric type

Result type

DOUBLE PRECISION

Chapter 8. Built-in Functions

329

Description

Returns the angle whose sine-to-cosine ratio is given by the two arguments, and whose sine and
cosine signs correspond to the signs of the arguments. This allows results across the entire circle,
including the angles -pi/2 and pi/2.

¥ The result is an angle in the range [-pi, pi].

¥ If x is negative, the result is pi if y is 0, and -pi if y is -0.

¥ If both y and x are 0, the result is meaningless. Starting with Firebird 3, an error will be raised if
both arguments are 0. At v.2.5.4, it is still not fixed in lower versions. For more details, visit
Tracker ticket CORE-3201 .

Notes

¥ A fully equivalent description of this function is the following: ATAN2(y, x) is the angle between
the positive X-axis and the line from the origin to the point (x, y). This also makes it obvious that
ATAN2(0, 0) is undefined.

¥ If x is greater than 0, ATAN2(y, x) is the same as ATAN(y/ x) .

¥ If both sine and cosine of the angle are already known, ATAN2(sin , cos) gives the angle.

8.2.6. CEIL() , CEILING()

Available in

DSQL, PSQL

Possible name conflict

YES % Read details (Affects CEILING only)

Syntax

CEIL[ING] (number)

Table 104. CEIL[ING] Function Parameters

Parameter Description

number An expression of a numeric type

Result type

BIGINT for exact numeric number , or DOUBLE PRECISION for floating point number

Description

Returns the smallest whole number greater than or equal to the argument.

See also

FLOOR()

Chapter 8. Built-in Functions

330

http://tracker.firebirdsql.org/browse/CORE-3201

8.2.7. COS()

Available in

DSQL, PSQL

Possible name conflict

YES % Read details

Syntax

COS (angle)

Table 105. COS Function Parameter

Parameter Description

angle An angle in radians

Result type

DOUBLE PRECISION

Description

Returns an angleÕs cosine. The argument must be given in radians.

¥ Any non- NULL result is!Ñ!obviously!Ñ!in the range [-1, 1].

8.2.8. COSH()

Available in

DSQL, PSQL

Possible name conflict

YES % Read details

Syntax

COSH (number)

Table 106. COSH Function Parameter

Parameter Description

number A number of a numeric type

Result type

DOUBLE PRECISION

Description

Returns the hyperbolic cosine of the argument.

¥ Any non- NULL result is in the range [1, INF].

Chapter 8. Built-in Functions

331

8.2.9. COT()

Available in

DSQL, PSQL

Possible name conflict

YES % Read details

Syntax

COT (angle)

Table 107. COT Function Parameter

Parameter Description

angle An angle in radians

Result type

DOUBLE PRECISION

Description

Returns an angleÕs cotangent. The argument must be given in radians.

8.2.10. EXP()

Available in

DSQL, PSQL

Syntax

EXP (number)

Table 108. EXP Function Parameter

Parameter Description

number A number of a numeric type

Result type

DOUBLE PRECISION

Description

Returns the natural exponential, enumber

See also

LN()

Chapter 8. Built-in Functions

332

