Firebird 3.0.10 Release Notes

Firebird Project: Core Developers, Helen Borrie

Version 03010-02, 03 June 2022

Table of Contents

1. General Notes

Sub-release V.3.0.10
V.3.0.10 Improvements
Sub-release V.3.0.9
Sub-release V.3.0.8
V.3.0.8 Improvements
Sub-release V.3.0.7
V.3.0.7 Improvements
Sub-release V.3.0.6
V.3.0.6 Improvements
Sub-release V.3.0.5
V.3.0.5 Improvements
Sub-release V.3.0.4
V.3.0.4 Improvements
Sub-release V.3.0.3
V.3.0.3 Improvements
Sub-release V.3.0.2
New Feature
Improvements
Sub-release V.3.0.1
Bug Reporting

Documentation

2. New In Firebird 3.0

Sub-Releases
Summary of Features

Compatibility with Older Versions

3. Changes in the Firebird Engine

Remodelled Architecture
Server Modes
Providers
Connection String and Protocols
Plug-Ins
External Engines
Optimizer Improvements
Other Optimizations
Remote Interface/Network Protocol
Miscellaneous Improvements

Connections Limit Raised

Table of Contents

10
10
10
10
10
10
11
11
12
12
12
12
13
14
15
15
17
17
17
19
20
20
21
21
21
24
25
25
25
26
29
32
38
40
40
41
41
41

Table of Contents

Better Error Diagnosis
ICU Version Upgraded
Internal Debug Info Made Human-readable
A Silly Message is Replaced
New Pseudocolumn RDB$RECORD_VERSION
systemd init Scripts
Firebird 3.0.4: Better Reporting on Dynamic Library Loading Errors
4. Changes to the Firebird API and ODS
ODS (On-Disk Structure) Changes
New ODS Number
Implementation ID is Deprecated
Maximum Database Size
Maximum Page Size
Maximum Number of Page Buffers in Cache
Extension of Transaction ID Space Limit
Limits Raised for Attachment and Statement IDs
System Tables
Application Programming Interfaces
Interfaces and the New Object-oriented API
Other New APIs
API Improvements
5. Reserved Words and Changes
New Keywords in Firebird 3.0
Reserved
Non-reserved
6. Configuration Additions and Changes
Scope of Parameters
Macro Substitution
Includes
Wildcards
Expression of Parameter Values
“Per-database” Configuration
Format of Configuration Entries
Parameters Available
New Parameters
SecurityDatabase
AuthServer and AuthClient
WireCrypt
UserManager
TracePlugin

WireCryptPlugin

42
42
42
42
42
42
42
44
44
44
45
45
45
45
46
46
46
48
49
51
51
60
60
60
60
61
61
61
62
62
63
63
63
63
64
64
64
65
65
65
65

Table of Contents

KeyHolderPlugin
Providers
ServerMode
RemoteAccess
WireCompression
[Pv6V60nly

Parameters Changed or Enhanced
ExternalFileAccess

Parameters Removed or Deprecated
RootDirectory
LegacyHash
OldSetClauseSemantics
OldColumnNaming
LockGrantOrder

Obsolete Windows priority settings

7. Security

Location of User Lists
Creating an Alternative Security Database
Database Encryption
Secret Key
Encryption Tasks
New Authentication Method in Firebird 3
SSL/TLS Support
Increased Password Length
The Authentication Plug-in
Multiple User Managers
V. 3.0.4 SRP Security Patch
"Over the wire" Connection Encryption
The Secret Session Key
Mapping of Users to Objects
The Mapping Rule
Syntax for MAPPING Objects
Legacy Mapping Rule

International Character Sets for User Accounts

Conditions for Non-ASCII Logins
SQL Features for Managing Access
SQL-driven User Management

SET ROLE

GRANT/REVOKE Rights GRANTED BY Specified User

REVOKE ALL ON ALL

User Privileges for Metadata Changes

66
66
66
66
66
67
67
68
68
68
68
68
69
69
69
70
70
70
71
71
71
72
73
73
73
74
75
76
77
77
78
78
81
81
82
83
83
86
87
88
88

Table of Contents

GRANT EXECUTE Privileges for UDFs
Improvement for Recursive Stored Procedures
Privileges to Protect Other Metadata Objects
Pseudo-Tables with List of Users
Restriction on DROP ROLE (v.3.0.1)
8. Data Definition Language (DDL)
Quick Links
DDL Enhancements
New Data Types
Manage Nullability in Domains and Columns
Modify Generators (Sequences)
Alter the Default Character Set
BLOB Expressions in Computed Columns
“Linger” Database Closure for Superserver
Option to Preserve Shadow File
New SQL for Managing Users and Access Privileges
9. Data Manipulation Language (DML)
Quick Links
Supplemental SQL:2008 Features for MERGE
Window (Analytical) Functions
Aggregate Functions Used as Window Functions
Partitioning
Ordering
Exclusive window functions
Advanced Plan Output
Advanced PLAN Output in isql
Internal Functions
SUBSTRING with Regular Expressions
Inverse Hyperbolic Trigonometric Functions
Statistical Functions
TRIM() BLOB Arguments Lose 32 KB limit
String Literal Limit Adjustments
Enhancements to DATEADD() Internal Function
DML Improvements
Alternatives for Embedding Quotes in String Literals
SQL:2008-Compliant OFFSET and FETCH Clauses
Prohibit Edgy Mixing of Implicit/Explicit Joins
Support for Left-side Parameters in WHERE Clause
Enhancements to the RETURNING Clause
Cursor Stability

An Improvement for Global Temporary Tables

90
90
90
91
92
93
93
93
93
98
98
99
99
99
100
100
102
102
102
104
104
105
106
107
109
110
110
110
110
111
113
114
114
114
114
115
116
116
117
117
118

Table of Contents

An Improvement for DML Strings 118
COUNT(Now Returns BIGINT 118
Optimizations 119
Dialect 1 Interface 120
Embedded SQL (ESQL) Enhancements 120
Context Variables 120
10. Procedural SQL (PSQL) 122
Quick Links 122
PSQL Stored Functions 122
PSQL Sub-routines 123
Packages 124
Signatures 126
Packaging Syntax 126
Simple Packaging Example 127
DDL triggers 128
Permissions 130
Support in Utilities 130
DDL_TRIGGER Context Namespace 131
Examples Using DDL Triggers 131
Scrollable (Bi-directional) Cursor Support 136
Cursor Syntax for PSQL 136
Exceptions with parameters 136
CONTINUE in Looping Logic 138
PSQL Cursor Stabilization 138
Extension of Colon Prefix Usage 139
PSQL Cursors as Variables 139
Colon Prefix as a Variable Marker 140
SQLSTATE in Exception Handlers 141
EXECUTE BLOCK Run-time Errors 142
PSQL Body Size Limit Raised 142
11. Monitoring & Command-line Utilities 143
Monitoring 143
Tracing 143
ghak 143
New “Skip Data” Backup Option 143
Long Names for Log Files 144
Run-time Statistics in Verbose Output 144
New Return Code 146
gsec 146
isql 146
SET EXPLAIN Extensions for Viewing Detailed Plans 146

Table of Contents

Metadata Extract 147
Path to INPUT Files 147
Command Buffer Size Increase 147
Deterministic Label for Stored Functions 147
fb_lock_print 147
Input Arguments 147
Usability Improvements 147
gfix 148
-NoLinger Switch 148
-icu switch 148
Improvements to Validation Messages 148
Other Tweaks 148
All Command-line Utilities 148
Hard-coded Messages Replaced 149
Arbitrary Switch Syntax Clean-up 149
12. Compatibility Issues 150
Where Are the Tools? 150
Other Windows Changes 150
aliases.conf Is No More 150
Embedded Connections 150
Initializing the Security Database 150
Initialization Steps 151
Additional Notes About Security Databases 152
Legacy Authentication 152
Upgrading a v.2.x Security Database 153
Steps 154
Local Connections to Superserver on Windows 154
Configuration Parameters 155
System Tables are Now Read-only 155
SQL Language Changes 155
Support for Mixed-Syntax Joins is Gone 156
Enforcement of Length Limit for Local Alias and Variable Names 156
Changes for User Names 156
Cursor Output Columns Must Be Named 156
“Cursor Stability” Effects 157
Reserved Words 157
Trace Configuration Syntax 157
Unexpected GDSCODE Errors 158
Remote Client Recognition 158
13. Bugs Fixed 159
Firebird 3.0.10 Release: Bug Fixes 159

Table of Contents

Core Engine 159
Server Crashes/Hang-ups 160
Windows Only 160
API/Remote Interface 160
Utilities 160
Firebird 3.0.9 Release: Bug Fixes 161
Core Engine 161
Server Crashes/Hang-ups 162
Windows Only 162
Firebird 3.0.8 Release: Bug Fixes 163
Core Engine 163
Server Crashes/Hang-ups 167
API/Remote Interface 168
Windows Only 169
Builds 169
Utilities 169
Firebird 3.0.7 Release: Bug Fixes 170
Core Engine 170
Server Crashes/Hang-ups 171
API/Remote Interface 171
Utilities 172
Firebird 3.0.6 Release: Bug Fixes 172
Core Engine 172
Server Crashes/Hang-ups 174
Builds 175
API/Remote Interface 175
POSIX Only 176
Utilities 176
Firebird 3.0.5 Release: Bug Fixes 178
Core Engine 178
Server Crashes/Hang-ups 183
Builds 184
API/Remote Interface 184
POSIX Only 185
MacOS Only 185
Windows Only 185
Utilities 186
Firebird 3.0.4 Release: Bug Fixes 187
Core Engine 187
Server Crashes/Hang-ups 192
API/Remote Interface 193

Table of Contents

Builds 193
Utilities 194
Firebird 3.0.3 Release: Bug Fixes 196
Core Engine 196
Server Crashes/Hang-ups 201
Builds 202
API/Remote Interface 202
POSIX Only 202
Utilities 203
Firebird 3.0.2 Release: Bug Fixes 204
Core Engine 204
Server Crashes/Hang-ups 208
Builds 208
API 208
POSIX Only 208
Windows Only 209
Firebird 3.0.1 Release: Bug Fixes 209
Core Engine 209
Server Crashes 213
API/Remote Interface 213
Utilities 214
Builds 215
POSIX-Specific 216
Firebird 3.0.0 Release: Bug Fixes 216
Core Engine 216
Server Crashes 218
Utilities 218
Builds 219
Firebird 3.0 Release Candidate 2: Bug Fixes and Minor Improvements 220
Core Engine 221
Server Crashes 225
Database Encryption 225
API/Remote Interface 226
Utilities 227
Builds and Installers 228
Firebird 3.0 Release Candidate 1: Bug Fixes and Minor Improvements 228
Core Engine 229
POSIX-Specific 234
Windows-Specific 234
Services API 235
Utilities 235

Table of Contents

Firebird 3.0 Second Beta Release: Bug Fixes
Core Engine
Server Crashes
API/Remote Interface
Utilities
Firebird 3.0 Second Beta Release: Improvements
Firebird 3.0 First Beta Release
Core Engine
Server Crashes
API/Remote Interface
Utilities
Firebird 3.0 Second Alpha Release
Core Engine
Server Crashes
API/Remote Interface
Security/User Management
Procedural Language
Data Definition Language
Data Manipulation Language
Utilities
International Language Support
Installation Issues
Firebird 3.0 First Alpha Release
Core Engine
API/Remote Interface
Procedural Language
Data Definition Language
Data Manipulation Language & DSQL
Command-line Utilities
International Language Support
14. Firebird 3.0 Project Teams
Appendix A: Licence Notice

236
236
244
244
245
246
248
249
255
256
257
258
258
261
262
262
262
263
264
264
266
266
266
266
271
272
273
274
275
276
277
279

Chapter 1. General Notes

Chapter 1. General Notes

Thank you for choosing Firebird 3.0. We cordially invite you to test it hard against your
expectations and engage with us in identifying and fixing any bugs you might encounter.

If you are upgrading from a previous major release version, be sure to study Chapter 12,
Compatibility Issues before you attempt to do anything to your existing databases!

Sub-release V.3.0.10
Bugs reported and fixed prior to the version 3.0.10 release are listed HERE.

V.3.0.10 Improvements

#7194 — Make it possible to avoid fbclient dependency in Pascal programs using firebird.pas.

Implemented by A. Peshkov

#7161 — Update zlib to 1.2.12.

Implemented by V. Khorsun

#7093 —Improve indexed lookup speed of strings when the last keys characters are part of collated
contractions.

Implemented by A. dos Santos Fernandes

#6872 — Faster execution of indexed STARTING WITH with UNICODE collation.

Implemented by A. dos Santos Fernandes

Sub-release V.3.0.9

Bugs reported and fixed prior to the version 3.0.9 release are listed HERE.

Sub-release V.3.0.8

Bugs reported and fixed prior to the version 3.0.8 release are listed HERE.

V.3.0.8 Improvements

#6957 — Added database creation time to the output of ISQL’s command SHOW DATABASE.

10

https://github.com/FirebirdSQL/firebird/issues/7194
https://github.com/FirebirdSQL/firebird/issues/7161
https://github.com/FirebirdSQL/firebird/issues/7093
https://github.com/FirebirdSQL/firebird/issues/7093
https://github.com/FirebirdSQL/firebird/issues/6957

Chapter 1. General Notes

Implemented by V. Khorsun

#6769 (CORE-6542) — More efficient implementation of SUBSTRING for UTF8 character set.

Implemented by A. dos Santos Fernandes

#6748 (CORE-6519) —Freeing a statement using DSQL_drop or DSQL_unprepare is no longer
deferred.

Implemented by V. Khorsun

#5913 (CORE-5647) — Increased number of formats/versions of views from 255 to 32K.

Implemented by A. dos Santos Fernandes

#5137 (CORE-4841)— Made message about missing password being always displayed as reply on
attempt to issue CREATE new login without PASSWORD clause.

Implemented by A. Peshkov

Sub-release V.3.0.7

Upgrade notice

All users of Firebird v3.0.6 are strongly encouraged to upgrade to v3.0.7 as soon as
possible due to several serious bugs found in v3.0.6 and fixed in this sub-release.

Bugs reported and fixed prior to the version 3.0.7 release are listed HERE.

Caution for Windows users

o Please avoid using both Firebird v3.0.6 and v3.0.7 simultaneously on the same
host, it may cause troubles due to lack of shared memory synchronization between
these releases.

V.3.0.7 Improvements
(CORE-6413) — Removed PIDFile/-pidfile option from Super(Server/Classic) systemd unit.
Implemented by A. Peshkov

(CORE-6362) — Added better diagnostic for the 'Missing security context' error.

11

https://github.com/FirebirdSQL/firebird/issues/6769
https://github.com/FirebirdSQL/firebird/issues/6748
https://github.com/FirebirdSQL/firebird/issues/5913
https://github.com/FirebirdSQL/firebird/issues/5137
http://tracker.firebirdsql.org/browse/CORE-6413
http://tracker.firebirdsql.org/browse/CORE-6362

Chapter 1. General Notes

Implemented by A. Peshkov

(CORE-6339) — Server was modified to disconnect from the security database when missing plugin
data structures cause an error

Implemented by A. Peshkov

Sub-release V.3.0.6

Bugs reported and fixed prior to the version 3.0.6 release are listed HERE.

Note for Pascal developers

o VERSION constants for Firebird API interfaces inside the distributed Firebird.pas
file were re-generated to match numeration rules used for other languages.

V.3.0.6 Improvements
(CORE-6334) — Added missing relocation support to MacOS builds.

Implemented by A. Peshkov

(CORE-6274) — Increased parsing speed of long queries.

Implemented by A. dos Santos Fernandes

(CORE-6237) — Improved performance when using SRP plugin.

Implemented by A. Peshkov

(CORE-4933) — Added better transaction control to ISQL.

Implemented by V. Khorsun

Sub-release V.3.0.5

Bugs reported and fixed prior to the version 3.0.5 release are listed HERE.

V.3.0.5 Improvements

(CORE-6072) — Improved the engine providers compatibility across Firebird versions.

12

http://tracker.firebirdsql.org/browse/CORE-6339
http://tracker.firebirdsql.org/browse/CORE-6334
http://tracker.firebirdsql.org/browse/CORE-6274
http://tracker.firebirdsql.org/browse/CORE-6237
http://tracker.firebirdsql.org/browse/CORE-4933
http://tracker.firebirdsql.org/browse/CORE-6072

Chapter 1. General Notes

Implemented by A. Peshkov

(CORE-6004) — Added a configuration switch to disable the "TCP Loopback Fast Path" option
(Windows only).

Implemented by KarloX2

(CORE-5948) — Improved the WIN_SSPI plugin to produce keys for the WireCrypt plugin.

Implemented by A. Peshkov

(CORE-5928) — Made it possible for the AuthClient plugin to access the authentication block from
DPB.

Implemented by A. Peshkov

(CORE-5724) — Added ability to use “install.sh -path /opt/my_path” without a need to install
Firebird first in the default folder.

Implemented by A. Peshkov

(CORE-4462) — Implemented option to restore compressed .nbk files without explicitly
decompressing them.

Implemented by A. Peshkov, V. Khorsun

Sub-release V.3.0.4

Bugs reported and fixed prior to the version 3.0.4 release are listed HERE.

BLOB Vulnerability

Because of the way BLOBs are implemented in Firebird, it is possible for a

o knowledgeable user to gain unauthorised access to their contents by a brute force
method without having the necessary privileges to access the table containing
them. Some work was done to ameliorate this risk in databases accessed by
Firebird 3.0.4 or higher.

o Security Patch for Srp Client Proof
See V. 3.0.4 SRP Security Patch in the Security chapter of these notes.

13

http://tracker.firebirdsql.org/browse/CORE-6004
http://tracker.firebirdsql.org/browse/CORE-5948
http://tracker.firebirdsql.org/browse/CORE-5928
http://tracker.firebirdsql.org/browse/CORE-5724
http://tracker.firebirdsql.org/browse/CORE-4462

Chapter 1. General Notes

Minor ODS Change for Some Platforms

An incompatibility in the structure of the page storing generators was discovered
o between ODS 12.0 databases from Windows and Linux-x64 and some others,

including MacOSX. The fix resulted in a minor ODS change, from 12.0 to 12.2, for

some but not all platforms. This has certain implications for compatibility, so

please read these notes.

V.3.0.4 Improvements

(CORE-5913) — Context variables WIRE COMPRESSED and WIRE_ENCRYPTED were added to the SYSTEM
namespace to report compression and encryption status, respectively, of the current connection.
See Context Variables: v.3.0.4 for details.

Implemented by V. Khorsun

(CORE-5908) — Enhanced reporting of errors when a dynamic library fails to load. For more
information, see Better Reporting on Dynamic Library Loading Errors.

Implemented by A. Peshkov

(CORE-5876) — When an external function (UDF) causes an error of the type “Arithmetic exception,
numeric overflow, or string truncation”, the error message will now include the name of the
function.

Implemented by A. Peshkov

(CORE-5860) —The API now supports passing the DPB/spb item ***_auth_plugin_list from an
application to the client interface. More details.

Implemented by A. Peshkov

(CORE-5853) —Two new context variables LOCALTIME and LOCALTIMESTAMP that are synonyms for
CURRENT_TIME and CURRENT_TIMESTAMP, respectively. They can be used in Firebird 3.0.4 and later, for
forward-compatibility with Firebird 4. See Context Variables: v.3.0.4 for details.

Implemented by A. dos Santos Fernandes

(CORE-5746) — The read-only restriction for system tables was relaxed to permit CREATE, ALTER and
DROP operations on their indexes.

Implemented by R. Abzalov, V. Khorsun

14

http://tracker.firebirdsql.org/browse/CORE-5913
http://tracker.firebirdsql.org/browse/CORE-5908
http://tracker.firebirdsql.org/browse/CORE-5876
http://tracker.firebirdsql.org/browse/CORE-5860
http://tracker.firebirdsql.org/browse/CORE-5853
http://tracker.firebirdsql.org/browse/CORE-5746

Chapter 1. General Notes

Sub-release V.3.0.3

Bugs reported and fixed prior to the version 3.0.3 release are listed HERE.

Security Alert

o If you are using the database encryption feature, or plan to do so, it is essential to
upgrade to this sub-release. Refer to this report for details.

V.3.0.3 Improvements

(CORE-5727) — Engine response has been improved on cancel/shutdown signals when scanning a
long list of pointer pages.

Implemented by V. Khorsun

(CORE-5712) — The name of the encryption key is not top secret information. It can be read using
the gstat utility or service, for example. However, for working with that name from a program it
was desirable to access the key name using the API call Attachment::getInfo(). Hence, this facility is
now provided via the information item fb_info_crypt_key.

Implemented by A. Peshkov

(CORE-5704) — Some clauses of the ALTER DATABASE statement require updating of the single row in
RDBSDATABASE: SET DEFAULT CHARACTER SET, SET LINGER, DROP LINGER. Others, such as BEGIN|END BACKUP,
ENCRYPT, DECRYPT, et al., do not need to touch that record.

In previous versions, to prevent concurrent instances of ALTER DATABASE running in parallel
transactions, the engine would run an update on the ROB$DATABASE record regardless of the nature of
clauses specified by the user. Hence, any other transaction that read the RDB$DATABASE record in
READ COMMITTED NO RECORD VERSION mode would be blocked briefly, even by a “dummy
update” that in fact did not update the record.

In some cases, such as with an ALTER DATABASE END BACKUP the blockage could last 10 minutes or
more. A user would seem to be unable to connect to the database with isql, for example, while ALTER
DATABASE END BACKUP was running. In fact, isql would connect successfully, but it would read
RDB$DATABASE immediately after attaching, using a READ COMMITTED NO RECORD VERSION WAIT
transaction and then just wait until the work of ALTER DATABASE END BACKUP was committed.

From this sub-release forward, the update of the RDB$DATABASE record is avoided when possible, and
an implicit lock is placed to prevent concurrent runs of the ALTER DATABASE statement.

Implemented by V. Khorsun

(CORE-5676) — All queries that are semantically the same should have the same plan. However,
until now, the optimizer understood only an explicit reference inside an ORDER BY clause and would

15

http://tracker.firebirdsql.org/browse/CORE-5727
http://tracker.firebirdsql.org/browse/CORE-5712
http://tracker.firebirdsql.org/browse/CORE-5704
http://tracker.firebirdsql.org/browse/CORE-5676

Chapter 1. General Notes

ignore sorts derived from equivalent expressions. Now, it will consider equivalence classes for
index navigation. Refer to the Tracker ticket for an example.

Implemented by D. Yemanov

(CORE-5674) — Common Table Expressions are now allowed to be left unused.

implemented by V. Khorsun

(CORE-5660) — Flushing a large number of dirty pages has been made faster.

Implemented by V. Khorsun

(CORE-5648) — Measures have been taken to avoid serialization of isc_attach_database calls issued
by EXECUTE STATEMENT.

Implemented by V. Khorsun

(CORE-5629) — Output from gstat now includes the date and time of analysis.

implemented by A. Peshkov

(CORE-5614) — The merge stage of a physical backup stage could run too long, especially with huge
page cache. Changes have been made to reduce it.

Implemented by V. Khorsun

(CORE-5610) —Message “Error during sweep: connection shutdown” now provides information
about the database that was being swept.

Implemented by A. Peshkov

(CORE-5602) — Improvement in performance of ALTER DOMAIN when the domain has many
dependencies.

Implemented by V. Khorsun

(CORE-5601) — Compression details and encryption status of the connection (fb_info_conn_flags)
have been added to the getInfo() API call. For more information see notes in the API chapter.

16

http://tracker.firebirdsql.org/browse/CORE-5674
http://tracker.firebirdsql.org/browse/CORE-5660
http://tracker.firebirdsql.org/browse/CORE-5648
http://tracker.firebirdsql.org/browse/CORE-5629
http://tracker.firebirdsql.org/browse/CORE-5614
http://tracker.firebirdsql.org/browse/CORE-5610
http://tracker.firebirdsql.org/browse/CORE-5602
http://tracker.firebirdsql.org/browse/CORE-5601

Chapter 1. General Notes

(CORE-5543) — Restoring a pre ODS 11.1 database now correctly populates RDBSRELATION_TYPE field
in the metadata.

implemented by D. Yemanov

(CORE-4913) — Speed of backup with nBackup when directed to NAS over SMB protocol has been
improved.

Implemented by J. Hejda & V. Khorsun

(CORE-3295) — The optimizer can now estimate the actual record compression ratio.

Implemented by D. Yemanov

Sub-release V.3.0.2

Bugs reported and fixed prior to the version 3.0.2 release are listed HERE.

One important bug fix addresses a serious security vulnerability present in all preceding Firebird
releases and sub-releases.

The exploit is available to authenticated users only, somewhat limiting the risks.
However, it is strongly recommended that any previous installation be upgraded
to this one without delay.

New Feature

(CORE-4563) — Support was added for fast/low-latency “TCP Loopback Fast Path” functionality
introduced in Windows 8 and Server 2012.

This feature is said to improve the performance of the TCP stack for local loopback connections, by
short-circuiting the TCP stack for local calls. The details of the feature can be found in this Microsoft
Technet blog.

Implemented by V. Khorsun

Improvements
The following improvements appear in this sub-release:
(CORE-5475) — IMPROVEMENT: It is now possible to filter out info and warnings from the trace log.

implemented by V. Khorsun

17

http://tracker.firebirdsql.org/browse/CORE-5543
http://tracker.firebirdsql.org/browse/CORE-4913
http://tracker.firebirdsql.org/browse/CORE-3295
http://tracker.firebirdsql.org/browse/CORE-4563
http://tinyurl.com/za6tvch
http://tinyurl.com/za6tvch
http://tracker.firebirdsql.org/browse/CORE-5475

Chapter 1. General Notes

(CORE-5442) — IMPROVEMENT: Enhanced control capability when sharing the database crypt key
between Superserver attachments.

implemented by A. Peshkov

(CORE-5441) —IMPROVEMENT: The physical numbers of frequently used data pages are now
cached to reduce the number of fetches of pointer pages.

implemented by V. Khorsun

(CORE-5434) — IMPROVEMENT: A read-only transaction will no longer force write the Header/TIP
page content to disk immediately after a change. This improvement gives a significant performance
gain where there are numerous light read-only transactions. At this stage, it affects only servers in
SS mode. For CS and SC it is more complex to implement and should appear in Firebird 4.0.

implemented by V. Khorsun

(CORE-5374) — IMPROVEMENT: The database name was made available to an encryption plug-in.

implemented by A. Peshkov

(CORE-5332) — IMPROVEMENT: libfbclient.so was compiled for Android (x86/x86-64/arm64).

implemented by M. A. Popa

(CORE-5257) —IMPROVEMENT: Nesting of keys in a plug-in configuration was enabled.

implemented by V. Khorsun

(CORE-5204) — IMPROVEMENT: The Linux code is now built with --enable-binreloc and an option
was included in the installer script to install in locations other than /opt/firebird.

implemented by A. Peshkov

(CORE-4486) — IMPROVEMENT: For Trace, a filter has been provided to INCLUDE / EXCLUDE errors
by their mnemonical names.

implemented by V. Khorsun

18

http://tracker.firebirdsql.org/browse/CORE-5442
http://tracker.firebirdsql.org/browse/CORE-5441
http://tracker.firebirdsql.org/browse/CORE-5434
http://tracker.firebirdsql.org/browse/CORE-5374
http://tracker.firebirdsql.org/browse/CORE-5332
http://tracker.firebirdsql.org/browse/CORE-5257
http://tracker.firebirdsql.org/browse/CORE-5204
http://tracker.firebirdsql.org/browse/CORE-4486

Chapter 1. General Notes

(CORE-3885) — IMPROVEMENT: Android port (arm32).

implemented by A. Peshkov

(CORE-3637) —IMPROVEMENT: A port was done and tested for Linux on the ancient Motorola
680000 CPU platform to satisfy some requirement from Debian.

implemented by A. Peshkov

(CORE-1095) — IMPROVEMENT: Support has been added to enable SELECT expressions to be valid
operands for the BETWEEN predicate.

implemented by D. Yemanov

Sub-release V.3.0.1

Bugs reported and fixed prior to the version 3.0.1 release are listed HERE.
The following improvements appear in this sub-release:

(CORE-5266) — IMPROVEMENT: The statement CREATE OR ALTER USER SYSDBA PASSWORD password can
now be used to initialize an empty securityN.fdb security database.

implemented by A. Peshkov

(CORE-5257) — IMPROVEMENT: Nesting of keys in a plug-in configuration was enabled.

implemented by A. Peshkov

(CORE-5229) — IMPROVEMENT: For URL-like connection strings on Windows, restriction of lookup
to IPv4 only was enabled.

implemented by Michal Kubecek

(CORE-5216) — IMPROVEMENT: Line and column numbers (location context) are now provided for
runtime errors raised inside EXECUTE BLOCK.

implemented by D. Yemanov

(CORE-5205) —IMPROVEMENT: A switch was added to build POSIX binaries with a built-in

19

http://tracker.firebirdsql.org/browse/CORE-3885
http://tracker.firebirdsql.org/browse/CORE-3637
http://tracker.firebirdsql.org/browse/CORE-1095
http://tracker.firebirdsql.org/browse/CORE-5266
http://tracker.firebirdsql.org/browse/CORE-5257
http://tracker.firebirdsql.org/browse/CORE-5229
http://tracker.firebirdsql.org/browse/CORE-5216
http://tracker.firebirdsql.org/browse/CORE-5205

Chapter 1. General Notes

libtommath library.

implemented by A. Peshkov

(CORE-5201) — IMPROVEMENT: gbak now returns a non-zero result code when restore fails on
creating and activating a deferred user index.

implemented by A. Peshkov

(CORE-5167) — IMPROVEMENT: Implicit conversion between Boolean and string is now done
automatically when a string for 'true’ or 'false' is used as a value in an expression. Case-insensitive.
Not valid when used with a Boolean operator — IS, NOT, AND or OR; not available for UNKNOWN.

implemented by A. dos Santos Fernandes

Bug Reporting

Bugs fixed since the release of version 3.0.0 are listed and described in the chapter entitled Bugs
Fixed.

* If you think you have discovered a new bug in this release, please make a point of reading the
instructions for bug reporting in the article How to Report Bugs Effectively, at the Firebird
Project website.

* If you think a bug fix hasn’t worked, or has caused a regression, please locate the original bug
report in the Tracker, reopen it if necessary, and follow the instructions below.

Follow these guidelines as you attempt to analyse your bug:

1. Write detailed bug reports, supplying the exact build number of your Firebird kit. Also provide
details of the OS platform. Include reproducible test data in your report and post it to our
Tracker.

2. You are warmly encouraged to make yourself known as a field-tester of this pre-release by
subscribing to the field-testers' list and posting the best possible bug description you can.

3. If you want to start a discussion thread about a bug or an implementation, please do so by
subscribing to the firebird-devel list. In that forum you might also see feedback about any
tracker ticket you post regarding this Beta.

Documentation

You will find all of the README documents referred to in these notes— as well as many others not
referred to —in the doc sub-directory of your Firebird 3.0 installation.

--The Firebird Project

20

http://tracker.firebirdsql.org/browse/CORE-5201
http://tracker.firebirdsql.org/browse/CORE-5167
https://www.firebirdsql.org/en/how-to-report-bugs/
http://tracker.firebirdsql.org
mailto:firebird-test-request@lists.sourceforge.net?subject=subscribe
mailto:firebird-devel-request@lists.sourceforge.net?subject=subscribe

Chapter 2. New In Firebird 3.0

Chapter 2. New In Firebird 3.0

The primary goals for Firebird 3 were to unify the server architecture and to improve support for
SMP and multiple-core hardware platforms. Parallel objectives were to improve threading of
engine processes, and the options for sharing page cache across thread and connection boundaries.

Alongside these aims came new strategies to improve performance, query optimization, monitoring
and scalability, and to address the demand for more security options. A number of popular features
were introduced into the SQL language, including the long-awaited support for the BOOLEAN data
type and the associated logical predications.

Sub-Releases

Details of improvements and links to bug fixes in sub-releases can be found in the General Notes
chapter.

Summary of Features

The following list summarises the features and changes, with links to the chapters and topics where
more detailed information can be found.

Unification of the Firebird executable is complete

With the completion of true SMP support for Superserver, the Firebird core is now a unified
library that supports a single ODS, loadable either as an embedded engine or by the “network
listener” executable. Choice of server model is determined by settings for a new configuration
parameter ServerMode, defining the locking and cache modes. It is specified at global level in
firebird.conf.

By default, ServerMode = Super (alias ThreadedDedicated), i.e., SuperServer.

The previous aliases.conf is replaced by databases.conf, now including not just
aliases for databases but also (optionally) configuration parameters to enable
configuration of databases and/or alternative security databases individually.

The changes are described in more detail in the chapter Changes in the Firebird Engine.

True SMP support for SuperServer

In Superserver mode, the engine now makes use of multiple CPUs and cores when spawning
connections.

Tracker: CORE-775
Implemented by V. Khorsun

New, object-oriented C++ APIs

Object-oriented C++ APIs enable external code routines to plug in and run safely inside Firebird
engine space, including (but not limited to):

21

http://tracker.firebirdsql.org/browse/CORE-775

Chapter 2. New In Firebird 3.0

* Encryption schemes for data
» User authentication schemes, including secure key exchange

» Eventually, plug-in support for stored procedures, triggers and functions written in Java, C++,
ObjectPascal, etc.

“Per-Database” Configuration

Custom configuration at database level can now be achieved with formal entries in
databases.conf (formerly aliases.conf).

Increased Limits in Several Areas

Transaction IDs, attachment IDs, statement IDs all have increased maximum values.
Maximum number of page buffers in cache is increased for 64-bit servers.
Maximum database size is increased.

For details, see Chapter 4, Changes to the API and ODS.

Multiple Security Databases

Firebird now supports user access control via more than one security database on the server.
Each database can be configured, using the parameter SecurityDatabase in databases.conf, to use
a specific database other than the default security3.fdb. The user structures may even be
defined within the user database itself.

The flag MON$SEC_DATABASE was added to the monitoring table MON$DATABASE to
o assist in determining what type of security database is used — Default, Self or
Other.

Several New SQL Commands to Manage Users and Access

Changes in architecture, stiffening of rules for security and data integrity, along with feature
requests, have given rise to a raft of new SQL commands for managing users and their access to
objects.

International Characters in User Credentials

Provided the new authentication provisions are used, the system can accept user names and
passwords containing non-ASCII characters. See International Character Sets for User Accounts
in the Security chapter.

New Data Type Support
BOOLEAN
A true BOOLEAN type (True/False/Unknown), complete with support for logical predicates, e.g.,

UPDATE ATABLE
SET MYBOOL = (COLUMNT IS DISTINCT FROM COLUMN2)

For details, see BOOLEAN Type.

22

Chapter 2. New In Firebird 3.0

IDENTITY

IDENTITY type, spawning unique identifiers for the defined column from an internal
generator. For details, see IDENTITY-Style Column.

Manage NULL/NOT NULL Column/Domain Attribute

The NOT NULL attribute on a column or domain can now be managed using the ALTER TABLE or
ALTER DOMAIN syntax, respectively. For details, see Manage Nullability in Domains and Columns.

Support for SQL Packages

For details, refer to Packages.

DDL Triggers

Now, triggers can be written to execute when database objects are modified or deleted. A typical
use is to block unauthorised users from performing these tasks.

For details, refer to DDL Triggers.

"Window' functions in DML

A whole new series of analytical functions to work with multiple subsets in DML. See Window
(Analytical) Functions.

Statistical functions

A suite of statistical functions returning values for a variety of variance, standard deviation and
linear regression formulae. See Statistical Functions.

Scrollable Cursors

The query engine now supports bi-directional (“scrollable”) cursors, enabling both forward and
backward navigation in PSQL and in DSQL with support from the API. See Scrollable (Bi-
directional) Cursor Support.

SQL:2008-Compliant OFFSET and FETCH Clauses

Support implemented for SQL:2008-compliant OFFSET and FETCH clauses as an alternative for
{FIRST and SKIP} or {ROWS and T0} clauses. See SQL:2008-Compliant OFFSET and FETCH Clauses.

IPv6 Support

Firebird 3 can use IPv6 connections on both client and server sides. See the notes for the new
configuration parameter IPv6V60nly.

Validation Whilst Database is On-line

On-line validation, first implemented in Firebird 2.5.4, has been ported forward to Firebird 3.0.
See Perform Some Validation Services On-line.

Run-time Statistics in ghak Verbose Output

Verbose output from gbak can now include run-time statistics, reporting times elapsed, page
reads and page writes. Also supported in the Services APIL

23

Chapter 2. New In Firebird 3.0

Compatibility with Older Versions

A series of notes about compatibility with older Firebird versions is collated in Chapter 12,
“Compatibility Issues”. Included there are instructions for initializing the security database, if it
was not done by your installer kit, and for configuring the server for the legacy style of

authentication.

24

Chapter 3. Changes in the Firebird Engine

Chapter 3. Changes in the Firebird Engine

In Firebird 3, the remodelling of the architecture that was begun in v.2.5 was completed with the
implementation of full SMP support for the Superserver model. In the new scheme, it is possible to
configure the execution model individually per database.

Remodelled Architecture

Dmitry Yemanov

The remodelled architecture integrates the core engine for Classic/Superclassic, Superserver and
embedded models in a common binary. The cache and lock behaviours that distinguish the
execution models are now determined externally by the settings in the new configuration
parameter ServerMode. The connection method is determined by the order and content of another
parameter, Providers and the connection protocol that is deduced at run-time from the connection
string supplied when a client requests an attachment.

The parameters for configuring the architecture are specified globally (in firebird.conf). Providers
can be overridden specifically for a database (in databases.conf).

databases.conf is the old aliases.conf from previous versions, with a new name. In

o Firebird 3, the role of this file involves (potentially) much more than being just a
lookup for database file paths. For more details about what can be configured at
database level, refer to the chapter Configuration Additions and Changes.

Server Modes

Table 1. Matrix of Server Modes

ServerMode Synonym Resource Model Provider[s]

Super ThreadedDedicated Database is opened exclusively bya Remote,
single server process. User Engine12’,
attachments are processed by threads Loopback
launched from the common pool and
all share a single database page cache
inside the process. This is the
installation default.

Superclassic ThreadedShared Databases are opened by a single Remote,
server process, but access is not Enginel2,

Loopback

exclusive: an embedded process can
open the same database concurrently.
User attachments are processed by
threads launched from the common
pool, each having its own database
page cache.

25

Chapter 3. Changes in the Firebird Engine

ServerMode Synonym Resource Model Provider[s]

(lassic MultiProcess A separate process is started for each Remote,
attachment to server. A database may Enginel2,
be opened by multiple Classic Loopback
processes, including local processes
for embedded access. Each process has
its own database page cache.

' Only if exclusive access is available

Providers

The providers are more or less what we traditionally thought of as the methods used to connect a
client to a server, that is to say, across a network, host-locally, via the local loopback (“localhost”) or
by a more direct local connection (the old 1ibfbembed.so on POSIX, now implemented as the plug-in
library 1i1bEnginel12.so; on Windows, engine12.d11; on MacOSX, engine12.dyl1ib).

* In firebird.conf, all are available by default, as follows:
#Providers = Remote,Enginel12,Loopback

* In databases.conf, one or more providers can be blocked by pasting the line from firebird.conf,
uncommenting it, and deleting the unwanted provider[s].

The Providers Architecture

Alex Peshkov

Although a key feature of Firebird 3, the Providers architecture is not new. Providers existed
historically in Firebird’s predecessors and, though well hidden, are present in all previous versions
of Firebird. They were introduced originally to deal with a task that has been performed since then
by “interface layers” such as ODBC, ADO, BDE and the like, to enable access to different database
engines using a single external interface.

Subsequently, this Providers architecture (known then as Open Systems Relational Interface, OSRI)
also showed itself as very efficient for supporting a mix of old and new database
formats —different major on-disk structure versions—on a single server having mixed
connections to local and remote databases.

The providers implemented in Firebird 3 make it possible to support all these modes (remote
connections, databases with differing ODS, foreign engines) as well as chaining providers. Chaining
is a term for a situation where a provider is using a callback to the standard API when performing
an operation on a database.

The Components

The main element of the Providers architecture is the y-valve. On the initial attach or create
database call, y-valve scans the list of known providers and calls them one by one until one of them

26

Chapter 3. Changes in the Firebird Engine

completes the requested operation successfully. For a connection that is already established, the
appropriate provider is called at once with almost zero overhead.

Let’s take a look at some samples of y-valve operation when it selects the appropriate provider at
the attach stage. These use the default configuration, which contains three providers:

* Remote (establish network connection)
* Engine12 (main database engine)

* Loopback (force network connection to the local server for <database name> without an explicit
network protocol being supplied).

The typical client configuration works this way: when one attaches to a database called
RemoteHost:dbname (TCP/IP syntax) or \\RemoteHost\dbname (NetBios), the Remote provider detects
explicit network protocol syntax and, finding it first in the Provider list, redirects the call to
RemoteHost.

When <database name> does not contain a network protocol but just the database name, the Remote
provider rejects it, and the Engine12 provider comes to the fore and tries to open the named
database file. If it succeeds, we get an embedded connection to the database.

A special “embedded library” is no longer required. To make the embedded
o connection, the standard client loads the appropriate provider and becomes an
embedded server.

Failure Response

But what happens if the engine returns an error on an attempt to attach to a database?

« If the database file to be attached does not exist there is no interest at all.

* An embedded connection may fail if the user attaching to it does not have enough rights to open
the database file. That would be the normal case if the database was not created by that user in
embedded mode or if he was not explicitly given OS rights for embedded access to databases on
that box.

o Setting access rights in such a manner is a requirement for correct Superserver
operation.

» After a failure of Enginel12 to access the database, the Loopback provider is attempted for an
attach. It is not very different to Remote except that it tries to access the named database <dbname>
on a server running a TCP/IP local loopback.

On Windows, XNET is tried first, then TCP/IP loopback (with localhost: prepended to <dbname>),
then Named Pipes (NetBEUI) loopback (with \\.\ prepended). The server may be started with
XNET (or any other protocol) disabled, so we try all the options. On POSIX only TCP/IP protocol
is supported, other options are not available

If the attachment succeeds, a remote-like connection is established with the database even
though it is located on the local machine.

27

Chapter 3. Changes in the Firebird Engine
Other Providers

Use of providers is not limited to the three standard ones. Firebird 3 does not support pre-ODS 12
databases. Removing support for old formats from the engine helps to simplify its code and gain a
little speed. Taking into account that this speed gain sometimes takes place in performance-critical
places, like searching a key in an index block, avoiding old code and related branches really does
make Firebird fly faster.

Nevertheless, the Providers architecture does make it possible to access old databases when
changing to a higher version of Firebird. A suitable provider may be considered for inclusion in a
later sub-release.

Custom Providers

A strong feature of the Providers architecture is ability for the deployer to add their own providers
to the server, the client, or both.

So what else might be wanted on a client, other than a remote connection? Recall Provider chaining
that was mentioned earlier. Imagine a case where a database is accessed via a very slow network
connection, say something like 3G or, worse, GPRS. What comes to mind as a way to speed it up is to
cache—on the client—some big tables that rarely change. Such systems were actually
implemented but, to do it, one had to rename fbclient to something arbitrary and load it into its
own library called fbclient, thus making it possible to use standard tools to access the database at
the same time as caching required tables. It works but, as a solution, it is clearly not ideal.

With the Providers architecture, instead of renaming libraries, one just adds a local caching
provider which can use any method to detect connections to it (something like a cache@ prefix at the
beginning of the database name, or whatever else you choose).

In this example, when the database name cache@RemoteHost:dbname is used, the caching provider
accepts the connection and invokes the y-valve once more with the traditional database name
RemoteHost:dbname. When the user later performs any call to his database, the caching provider gets
control of it before Remote does and, for a locally cached table, can forestall calls to the remote
server.

Use of chaining allows a lot of other useful things to be implemented. An example might be MySQL-
style replication at statement level without the need for triggers: just repeat the same calls for the
replication host, perhaps when a transaction is committed. In this case, the chaining provider
would be installed on the server, not the client, and no modification of the command line would be
needed.

e That said, statement-level replication is a very questionable feature.

To avoid cycling when performing a callback to y-valve at attach time, such a provider can modify
the list of providers using the isc_dpb_config parameter in the DPB. The same technique may be
used at the client, too.

For details, see the Configuration Additions and Changes chapter.

The ability to access foreign database engines using providers should not be overlooked, either. It

28

Chapter 3. Changes in the Firebird Engine

might seem strange to consider this, given the number of tools available for this sort of task. Think
about the ability to access other Firebird databases using EXECUTE STATEMENT, that became available
in Firebird 2.5. With a provider to ODBC or other common tool to access various data sources it is
within reach to use EXECUTE STATEMENT to get direct access from procedures and triggers, to data
from any database having a driver for the chosen access tool. It is even possible to have a provider
to access some particular type of foreign database engine if there is some reason to want to avoid
the ODBC layer.

Providers Q & A

1. Interfaces and providers are probably very good, but I have an old task written using plain API
functions and for a lot of reasons I can’t rewrite it in the near future. Does it mean I will have
problems migrating to Firebird 3?

Definitely no problems. The old API is supported for backward compatibility in Firebird 3 and
will be supported in future versions as long as people need it.

2. And what about performance when using the old API?

The functional API is implemented as a very thin layer over interfaces. Code in most cases is
trivial: convert passed handles to pointers to interfaces —hitherto referred to as “handle
validation” — and invoke the appropriate function from the interface.

Functions that execute an SQL operation and fetch data from it are one place where coding is a
little more complex, involving the SQLDA construct. The data moves related to the SQLDA have
always created an overhead. The logic between the new and old APIs does not add significantly
to that old overhead.

Connection String and Protocols

Connection string refers to the local or remote path to the database to which a client requests an
attachment (connection). The syntax of the connection string determines the transport protocol by
which clients and the server communicate. The legacy syntaxes for the available protocols,
supported by all Firebird versions, are as follows:

For TCP/IP (aka INET) protocol

<host> [/ <port>] : <database file path or alias>

For named pipes (aka NetBEUI, aka WNET) protocol

\\ <host> [@ <port>] \ <database file path or alias>

For local connections, simply

<database file path or alias>....

Local connection is implied if <host> is omitted. Depending on settings, platform and Firebird
version, it could be performed via either the embedded engine, XNET (shared memory) protocol or
TCP/IP localhost loopback.

29

Chapter 3. Changes in the Firebird Engine
Examples

Connect via TCP/IP using database name

192.168.0.11:/db/mydb. fdb
192.168.0.11:C:\db\mydb. fdb
myserver:C:\db\mydb.fdb
localhost:/db/mydb.fdb

Connect via TCP/IP using database alias

192.168.0.11:mydb
myserver :mydb
localhost:mydb

Connect via TCP/IP using non-default port 3051

192.168.0.11/3051:C:\db\mydb. fdb
192.168.0.11/3051:mydb
myserver/3051:/db/mydb. fdb
localhost/3051:/db/mydb. fdb
myserver/3051:mydb
localhost/3051:mydb

Connect via TCP/IP using non-default service name

192.168.0.11/fb_db:C:\db\mydb. fdb
192.168.0.11/fb_db:mydb
localhost/fb_db:/db/mydb.fdb
myserver/fb_db:/db/mydb. fdb
myserver/fb_db:mydb
localhost/fb_db:mydb

Connect via named pipes (Windows only)

\\myserver\C:\db\mydb.fdb
\\myserver@fb_db\C:\db\mydb. fdb

Local connection

/db/mydb. fdb
C:\db\mydb.fdb
mydb

URL-Style Connection Strings

Firebird 3.0 introduces an additional, generalized, URL-style syntax for connection strings. The
pattern is:

30

Chapter 3. Changes in the Firebird Engine

[<protocol> : // [<host> [: <port>]]] / <database file path or alias>

<protocol> ::= INET | WNET | XNET

INET resolves to TCP/IP, WNET to Named Pipes, while XNET surfaces the old “Windows local protocol”
(shared memory).

Examples

Connect via TCP/IP using database name

inet://192.168.0.11//db/mydb. fdb
inet://192.168.0.11/C:\db\mydb. fdb
inet://myserver/C:\db\mydb.fdb
inet://localhost//db/mydb.fdb

Connect via TCP/IP using database alias

inet://192.168.0.11/mydb
inet://myserver/mydb
inet://localhost/mydb

Connect via TCP/IP using non-default port 3051

inet://192.168.0.11:3051/C:\db\mydb. fdb
inet://192.168.0.11:3051/mydb
inet://myserver:3051//db/mydb. fdb
inet://localhost:3051//db/mydb. fdb
inet://myserver:3051/mydb
inet://localhost:3051/mydb

Connect via TCP/IP using non-default service name

inet://192.168.0.11:fb_db/C:\db\mydb.fdb
inet://192.168.0.11:fb_db/mydb
inet://localhost:fb_db//db/mydb.fdb
inet://myserver:fb_db//db/mydb.fdb
inet://myserver:fb_db/mydb
inet://localhost:fb_db/mydb

Connect via named pipes

wnet://myserver/C:\db\mydb. fdb
wnet://myserver:fb_db/C:\db\mydb. fdb

31

Chapter 3. Changes in the Firebird Engine

Loopback connection via TCP/IP

inet:///db/mydb.fdb
inet://C:\db\mydb.fdb
inet://mydb

Loopback connection via named pipes

wnet://C:\db\mydb.fdb
wnet://mydb

Local connection via shared memory

xnet://C:\db\mydb. fdb
xnet://mydb

Local (embedded by default) connection

/db/mydb. fdb
C:\db\mydb.fdb
mydb

Local connection is implied if <host> is omitted. Depending on settings, platform and Firebird
version, it could be performed via either the embedded engine, XNET (shared memory) protocol or
TCP/IP localhost loopback.

On the server side, the provider configuration is in the default order Remote, Engine12, Loopback.
If the Remote provider fails to match the connection string because the protocol or host parts are
missing, then Enginel2, the embedded engine, handles it as a hostless connection. To connect
locally using a specific transport protocol, it is necessary to specify that protocol:

inet://<database file path or alias>
or
wnet://<database file path or alias>
or
xnet://<database file path or alias>

o WNET (named pipes) and XNET (shared memory) protocols are available only on
Windows.

Plug-Ins
Alex Peshkov

From version 3 onward, Firebird’s architecture supports plug-ins. For a number of predefined
points in the Firebird code, a developer can write his own fragment of code for execution when

32

Chapter 3. Changes in the Firebird Engine
needed.

A plug-in is not necessarily one written by a third party: Firebird has a number of intrinsic plug-ins.
Even some core parts of Firebird are implemented as plug-ins.

What is a Plug-In?

The term “plug-in” is used to name related but different things:
* a dynamic library, containing code to be loaded as a plug-in (often called a plug-in module) and
stored in the $FIREBIRD/plugins directory;

* code implementing a plug-in. That is slightly different from the library, since a single dynamic
library may contain code for more than one plug-in;

* a plug-in’s factory: an object created by that code (pure virtual C++ class), creating instances of
the plug-in at Firebird’s request;

* an instance of the plug-in, created by its factory.

Plug-In Types

Firebird’s plug-in architecture makes it possible to create plug-ins of predefined types. Each version
of Firebird will have a fixed set of supported plug-in types. To add a further type, the first
requirement is to modify the Firebird code. Our plug-in architecture facilitates both adding new
types of plug-ins and simplifying the coding of the plug-in along generic lines.

To be able to implement a plug-in, say, for encrypting a database on the disk, the Firebird code has
to be prepared for it: it must have a point from which the plug-in is called.

The set of plug-in types implemented in Firebird 3 comprises:
user authentication related
» AuthServer (validates user’s credentials on server when logins are used)

» AuthClient (prepares credentials to be passed over the wire)

» AuthUserManagement (maintains a list of users on a server in a format known to AuthServer)

ExternalEngine

Controls the use of various engines, see External Engines.

Trace

The Trace plug-in was introduced in Firebird 2.5, but the way it interacts with the engine was
changed in Firebird 3 to accord with the new generic rules.

Encryption

encrypting plug-ins are for

* network (WireCrypt)
 disk (DbCrypt)
* a helper plug-in (KeyHolder), used to help maintain the secret key(s) for DbCrypt

33

Chapter 3. Changes in the Firebird Engine

Provider

Firebird 3 supports providers as a plug-in type.

Technical Details

Plug-ins use a set of special Firebird interfaces. All plug-in-specific interfaces are reference counted,
thus putting their lifetime under specific control. Interfaces are declared in the include file plug-
in.h. A simple example for writing a plug-in module can be found in DbCrypt_example.

The example does not perform any actual encryption, it is just a sample of how to
o write a plug-in. Complete instructions for writing plug-ins are not in scope for this
document.

Features of a Plug-In

A short list of plug-in features:

* You can write a plug-in in any language that supports pure virtual interfaces. Interface
declarations will need to be written for your language if they are missing.

* As with UDFs, you are free to add any reasonable code to your plug-in—with emphasis on
reasonable. For example, prompting for user input at the server’s console from a plug-in is
hardly “reasonable”!

* Calling the Firebird API from your plug-in is OK, if needed. For example, the default
authentication server and user manager use a Firebird database to store accounts.

* Firebird provides a set of interfaces to help with configuring your plug-ins. It is not obligatory to
use them, since the plug-in code is generic and can employ any useful method for capturing
configuration information. However, using the standard tools provides commonality with the
established configuration style and should save the additional effort of rolling your own and
documenting it separately.

Configuring Plug-ins
Configuration of plug-ins has two parts:

1. The engine has to be instructed what plug-ins it should load

2. The plug-ins themselves sometimes need some configuration.

The plug-ins to be loaded for each plug-in type are defined in the main configuration file,
firebird.conf, usually with defaults. The ones defined in Firebird 3 are discussed in the chapter
entitled “Configuration Additions and Changes”. In summary, the set that provides normal
operation in the server, client and embedded cases consists of:

AuthServer

Srp, Win_Sspi

AuthClient

Srp, Win_Sspi, Legacy_Auth
* UserManager = Srp

* TracePlugin = fbtrace

34

Chapter 3. Changes in the Firebird Engine

* Providers = Remote,Engine12,Loopback

* WireCryptPlugin = Arc4

If you want to add other plug-ins, they must be cited in firebird.conf. Apart from
o other considerations, this requirement acts as a security measure to avoid loading
unknown code.

Taking the entry TracePlugin = fbtrace as an example, what does the value fbtrace signify? In a
trivial case, it can indicate the name of a dynamic library, but the precise answer is more
complicated.

As mentioned earlier, a single plug-in module may implement more than one plug-in. In addition, a
single plug-in may have more than one configuration at once, with a separate plug-in factory
created for each configuration. Each of these three object contexts (module | implementation |
factory) has its own name:

* The name of a module is the file name of a dynamic library

* The name of a plug-in implementation is the one given to it by the developer of the plug-in. It is
hard-coded inside the module.

* The name of a factory is, by default, the same as the name of the plug-in implementation’s
name. It is the factory name which is actually used in firebird.conf.

In a typical trivial case, a module contains one plug-in that works with just one configuration and
all three names are equal, and no more configuration is needed. An example would be
libEngine12.so / Enginel12.d11 / Engine12.dylib, that contains the implementation of the embedded
provider Engine12. Nothing other than the record Providers = Enginel12 is needed to load it.

For something more complex a file will help you to set up the plug-in factories precisely.

plugins.conf

The file $(root)/plugins.conf has two types of records: config and plugin.

the plugin record is a set of rules for loading and activating the plug-in. Its format is:

Plugin = PlugName ## this is the name to be referenced in firebird.conf
{
Module = LibName ## name of dynamic library
RegisterName = RegName ## name given to plug-in by its developer
Config = ConfName ## name of config record to be used
ConfigFile = ConfFile ## name of a file that contains plug-in's configuration

}

When plug-in PlugName is needed, Firebird loads the library LibName and locates the plug-in
registered with the name RegName. The configuration values from the config record ConfName or
the config file ConfFile are passed to the library.

35

Chapter 3. Changes in the Firebird Engine

If both ConfName and ConfFile are given, then the config record will be used.

o If both parameters are missing, the default PlugName is used; except that if the
ConfigFile is present and its name is the same as the module’s dynamic library but
with a .conf extension, it will be used.

The ConfigFile is expected to use the format Key=Value, in line with other Firebird configuration
files.

For the plug-in configuration record the same format is used:

Config = ConfName

{
Key1
Key?2

Valuel
Value?

A Sample Setup

Suppose you have a server for which some clients trust the wire encryption from one vendor and
others prefer a different one. They have different licences for the appropriate client components
but both vendors use the name “BestCrypt” for their products.

The situation would require renaming the libraries to, say, WC1 and WC2, since there cannot be two
files in the same directory with the same name. Now, the modules stop loading automatically
because neither is called “BestCrypt” any longer.

To fix the problem, plug-ins.conf should contain something like this:

Plugin = WC1
{
RegisterName = BestCrypt
}
Plugin = WC2
{
RegisterName = BestCrypt
}

The module names will be automatically set to WC1 and WC2 and found. You can add any
configuration info that the plug-ins need.

Remember to modify firebird.conf to enable both plug-ins for the WireCryptPlugin parameter:

WireCryptPlugin = WCT, WC2

The server will now select appropriate plug-in automatically to talk to the client.

36

Chapter 3. Changes in the Firebird Engine

Another sample is distributed with Firebird, in $(root)/plugins.conf, configuring one of the
standard plug-ins, UDR. Because it was written to a use non-default configuration, the module name
and one configuration parameter are supplied explicitly.

Plug-Ins Q & A

1. There are plug-ins named Remote, Loopback, Arc4 in the default configuration, but no libraries with
such names. How do they work?

They are “built-in” plug-ins, built into the fbclient library, and thus always present. Their
existence is due to the old ability to distribute the Firebird client for Windows as a single dll.
The feature is retained for cases where the standard set of plug-ins is used.

2. What do the names of Srp and Arc4 plug-ins mean?

Srp implements the Secure Remote Passwords protocol, the default way of authenticating users
in Firebird 3. Its effective password length is 20 bytes, resistant to most attacks (including “man
in the middle”) and works without requiring any key exchange between client and server to
work.

Arc4 means Alleged RC4—an implementation of RC4 cypher. Its advantage is that it can
generate a unique, cryptographically strong key on both client and server that is impossible to
guess by capturing data transferred over the wire during password validation by SRP.

The key is used by Arc4 after the SRP handshake, which makes wire encryption secure without
need to exchange any keys between client and server explicitly.

3. What do Win_Sspi and Legacy_Auth mean?

Windows SSPI has been in use since Firebird 2.1 for Windows trusted user authentication.
Legacy_Auth is a compatibility plug-in to enable connection by the Firebird 3 client to older
servers. It is enabled by default in the client.

And yes, it still transfers almost plain passwords over the wire, for compatibility.

On the server it works with security3.fdb just as with a security database from Firebird 2.5. It
should be avoided except in situations where you understand well what you are sacrificing.

To use Legacy_Auth on the server you will need to avert network traffic encryption in
firebird.conf by reducing the default Required setting for the WireCrypt parameter, either

Enabled

WireCrypt

or

WireCrypt = Disabled

4. How can I find out what the standard Authentication and User Manager plug-ins are?

They are listed in firebird.conf.

37

Chapter 3. Changes in the Firebird Engine

External Engines

Adriano dos Santos Fernandes

The UDR (User Defined Routines) engine adds a layer on top of the FirebirdExternal engine
interface with the purpose of

* establishing a way to hook external modules into the server and make them available for use
» creating an API so that external modules can register their available routines

* making instances of routines “per attachment”, rather than dependent on the internal
implementation details of the engine

External Names

An external name for the UDR engine is defined as
'<module name>!<routine name>!<misc info>'

The <module name> is used to locate the library, <routine name> is used to locate the routine
registered by the given module, and <misc info> is an optional user-defined string that can be
passed to the routine to be read by the user.

Module Availability

Modules available to the UDR engine should be in a directory listed by way of the path attribute of
the corresponding plugin_config tag. By default, a UDR module should be on <fbroot>/plugins/udr,
in accordance with its path attribute in <fbroot>/plugins/udr_engine.conf.

The user library should include FirebirdUdr.h (or FirebirdUdrCpp.h) and link with the udr_engine
library. Routines are easily defined and registered, using some macros, but nothing prevents you
from doing things manually.

A sample routine library is implemented in examples/udr, showing how to write
o functions, selectable procedures and triggers. It also shows how to interact with
the current attachment through the legacy APIL.

Scope

The state of a UDR routine (i.e., its member variables) is shared among multiple invocations of the
same routine until it is unloaded from the metadata cache. However, it should be noted that the
instances are isolated “per session”.

Character Set

By default, UDR routines use the character set that was specified by the client.

38

Chapter 3. Changes in the Firebird Engine

In future, routines will be able to modify the character set by overriding the

o getCharSet method. The chosen character set will be valid for communication with
the old Firebird client library as well as the communications passed through the
FirebirdExternal APIL

Enabling UDRs in the Database

Enabling an external routine in the database involves a DDL command to “create” it. Of course, it
was already created externally and (we hope) well tested.

Syntax

{ CREATE [OR ALTER] | RECREATE | ALTER } PROCEDURE <name>
[(<parameter list>)]
[RETURNS (<parameter list>)]
EXTERNAL NAME '<external name>' ENGINE <engine>

{ CREATE [OR ALTER] | RECREATE | ALTER } FUNCTION <name>
[<parameter list>]
RETURNS <data type>
EXTERNAL NAME '<external name>' ENGINE <engine>

{ CREATE [OR ALTER] | RECREATE | ALTER } TRIGGER <name>

EXTERNAL NAME '<external name>' ENGINE <engine>

Examples

create procedure gen_rows (
start_n integer not null,
end_n integer not null
) returns (
n integer not null
) external name 'udrcpp_example!gen_rows'
engine udr;

create function wait_event (
event_name varchar(31) character set ascii
) returns integer
external name 'udrcpp_example!wait_event'
engine udr;

create trigger persons_replicate
after insert on persons
external name 'udrcpp_example!replicatelds1’
engine udr;

39

Chapter 3. Changes in the Firebird Engine
How it Works

The external names are opaque strings to Firebird. They are recognized by specific external
engines. External engines are declared in configuration files, possibly in the same file as a plug-in,
as in the sample UDR library that is implemented in $(root)/plugins.

external_engine = UDR {
plugin_module = UDR_engine
}

plugin_module = UDR_engine {
filename = $(this)/udr_engine
plugin_config = UDR_config

}

plugin_config = UDR_config {
path = $(this)/udr
}

When Firebird wants to load an external routine (function, procedure or trigger) into its metadata
cache, it gets the external engine through the plug-in external engine factory and asks it for the
routine. The plug-in used is the one referenced by the attribute plugin_module of the external
engine.

Depending on the server architecture (Superserver, Classic, etc) and
o implementation details, Firebird may get external engine instances “per database”
or “per connection”. Currently, it always gets instances “per database”.

Optimizer Improvements
Dmitry Yemanov
* See Tracker item CORE-4528.
Hash/merge joins for non-field (DBKEY or derived expression) equalities are now allowed.
» See Tracker item CORE-1482.

The optimizer now considers the ORDER BY optimization when making its decision about join
order.

Other Optimizations
Vlad Khorsun
* See Tracker item CORE-4556.

Data pages are now allocated as a group of sequential ordered pages (extents).

40

http://tracker.firebirdsql.org/browse/CORE-4528
http://tracker.firebirdsql.org/browse/CORE-1482
http://tracker.firebirdsql.org/browse/CORE-4556

Chapter 3. Changes in the Firebird Engine
» See Tracker item CORE-4445.

The main database file extends faster when physical backup state changes from stalled to
merge.

» See Tracker item CORE-4443.

Linux systems that support “fast file growth” can now use it.
» See Tracker item CORE-4432.

Attachments no longer block others when the allocation table is read for the first time.
» See Tracker item CORE-4431.

Contention has been reduced for the allocation table lock while database is in stalled physical
backup state.

Remote Interface/Network Protocol

Dmitry Yemanov
Tracker item CORE-2530.

Further improvements were made to Firebird’s network protocol, providing a denser data stream
and better prefetch logic. The following improvements were implemented:

1. The full length of a field whose value is NULL is no longer sent over the wire. (Tracker item CORE-
2897). NULL flags (4 bytes per field) are replaced with a bitmap and only these flags are
transmitted, in the bitmap.

This improvement is available for the DSQL API only, so ghak does not benefit from this
improvement, as it uses a lower level BLR API.

2. The prefetch (batch receive) algorithm is now aware of variable-length messages, so that
VARCHARs and NULLs may reduce the transmitted message size, allowing more rows to be
transmitted in each batch.

Acknowledgement

o This work was sponsored by donations collected at the 9th Firebird Developers'
Day conference in Brazil.

Miscellaneous Improvements

Miscellaneous engine improvements include:

Connections Limit Raised

Paul Beach

41

http://tracker.firebirdsql.org/browse/CORE-4445
http://tracker.firebirdsql.org/browse/CORE-4443
http://tracker.firebirdsql.org/browse/CORE-4432
http://tracker.firebirdsql.org/browse/CORE-4431
http://tracker.firebirdsql.org/browse/CORE-2530
http://tracker.firebirdsql.org/browse/CORE-2897
http://tracker.firebirdsql.org/browse/CORE-2897

Chapter 3. Changes in the Firebird Engine

(CORE-4439) — Maximum connections (FD_SETSIZE) on Windows Superserver and Superclassic was
raised from 1024 to 2048.

Better Error Diagnosis
Dmitry Yemanov

(CORE-3881) — The error reported for index/constraint violations has been extended to include the
problematic key value.

ICU Version Upgraded
Adriano dos Santos Fernandes

(CORE-2224) — The ICU version was upgraded to v.52.1.

Internal Debug Info Made Human-readable

Vlad Khorsun

A new BLOB filter translates internal debug information into text.

A Silly Message is Replaced

Claudio Valderrama C.

A silly message sent by the parser when a reference to an undefined object was encountered was
replaced with one that tells it like it really is.

New Pseudocolumn RDB$RECORD VERSION
Adriano dos Santos Fernandes

A pseudocolumn named RDB$RECORD_VERSION returns the number of the transaction that created the
current record version.

It is retrieved the same way as RDB$DB_KEY, i.e., select RDB$RECORD_VERSION from aTable where::

systemd init Scripts

Alex Peshkov

systemd init scripts are available in Firebird 3 POSIX installers. See Tracker ticket CORE-4085.

Firebird 3.0.4: Better Reporting on Dynamic Library Loading Errors
Alex Peshkov

A mistake in the initial design of the ModulelLoader class meant that errors displayed when dynamic
libraries failed to load were lacking any OS-specific information about the reason for the failure (no

42

http://tracker.firebirdsql.org/browse/CORE-4439
http://tracker.firebirdsql.org/browse/CORE-3881
http://tracker.firebirdsql.org/browse/CORE-2224
http://tracker.firebirdsql.org/browse/CORE-4085

Chapter 3. Changes in the Firebird Engine

such file, invalid format, unresolved external reference, etc.). The only report was “Module/library
not loaded”. In many cases, that made it extremely hard to find and fix the related bugs.

Firebird 3.0.4 extends the reported errors to show the exact reason a library failed to load.

Exceptions

Because the use of external functions (UDFs) has been deprecated, those modules
do not get this extended error treatment. The other exception is the ICU modules,
due to the fact more than 50 retries are done when those libraries fail to load.
Reporting such an avalanche of error detail was considered impracticable.

43

Chapter 4. Changes to the Firebird API and ODS

Chapter 4. Changes to the Firebird API and
ODS

ODS (On-Disk Structure) Changes

New ODS Number

Firebird 3.0 creates databases with an ODS (On-Disk Structure) version of 12. In the initial release, a
database with an older ODS cannot be opened by Firebird 3.0. In order to work with a database
with an older ODS it will be necessary to make a backup using gbak under the older server and
restore it with ghak on Firebird 3.

o A legacy provider for databases with ODS 8 to 11.2 is planned for a future sub-
release.

Firebird 3.0.4: ODS 12.2 for POSIX Platforms

In the version 3.0.4 sub-release we have a minor ODS change for databases created or restored on a
Linux x86 (32-bit) platform and all other POSIX platforms including MacOSX. The new ODS for
these databases is 12.2.

The change is due to a change in the page layout of the system table RDB§GENERATORS affecting only
some platforms. ODS 12.0 databases copied across platforms, e.g., from Linux-x86 to Linux-x64,
show wrong values for generators, typically very large.

Other Platforms

The most popular platforms — Windows and Linux x64 (64-bit) — were not affected by the change.
They were carefully checked to verify that, for them, there is no actual difference between ODS 12.0
and 12.2. To avoid disturbing users of these platforms with a new ODS, it was decided to retain the
ODS number 12.0 for them.

For non-Windows and non-Intel-Linux platforms, developers could not perform all the required
checks. The only guaranteed safe solution for them was the minor ODS upgrade.

To restate, MacOSX (32-bit and 64-bit) and 32-bit Linux builds will create (and restore) databases as
ODS 12.2.

Existing databases (with ODS 12.0) are always opened successfully with Firebird 3.0.4 on the
platform where they were initially created. Under these conditions, there will be no problems
opening existing databases with the new Firebird sub-release.

Cross-Platform File-Copying

Cross-platform copying of any ODS 12.0 database other than those created on Windows and Linux-
x64 is best avoided: Firebird versions < 3.0.3 may produce errors with generators, while version
3.0.4 will report an issue and not attach to such a database.

44

Chapter 4. Changes to the Firebird API and ODS

Our checks did not reveal any cross-platform compatibility issues between ODS 12.2 databases and
ODS 12.0 databases from Windows and Linux-x64 with matching Endianness.

Implementation ID is Deprecated
Alex Peshkov

The Implementation ID in the ODS of a database is deprecated in favour of a new field in database
headers describing hardware details that need to match in order for the database to be assumed to
have been created by a compatible implementation.

The old Implementation ID is replaced with a 4-byte structure consisting of hardware ID, operating
system ID, compiler ID and compatibility flags. The three ID fields are just for information: the ODS
does not depend upon them directly, and they are not checked when opening the database.

The compatibility flags are checked for a match between the database and the engine opening it.
Currently, we have only one flag, for endianness. As previously, Firebird will not open a database
on little-endian that was created on big-endian, nor vice versa.

Sample gstat Output

./gstat -h employee
Database /usr/home/firebird/trunk/gen/Debug/firebird/examples/empbuild/employee.fdb
Database header page information:

Implementation HW=AMD/Intel/x64 little-endian 0S=Linux CC=gcc

The purpose is to make it easier to do ports of Firebird for new platforms.

Maximum Database Size

Maximum database size is increased to 2% pages (previously 2°' -1 pages). The new limit is
16TB/32TB/64TB, depending on the page size.

Maximum Page Size

The maximum page size remains 16 KB (16384 bytes).

Maximum Number of Page Buffers in Cache

The maximum number of pages that can be configured for the database cache depends on whether
the database is running under 64-bit or 32-bit Firebird:

* 64-bit: 2% -1 (2,147,483,647) pages
» 32-bit: 128,000 pages, i.e. unchanged from version 2.5

45

Chapter 4. Changes to the Firebird API and ODS
Extension of Transaction ID Space Limit
Dmitry Yemanov

Historically, transaction ID space was limited to 2°' -1 transactions, counted from the time the
database was created. After that point, the database becomes unavailable until backup and restore
is performed to reset the transaction ID counter back to zero. Initially in Firebird 3.0, the
transaction ID space was raised to 2* transactions, doubling the database up-time without backup
and restore.

This improvement request is about shifting this limit even further, with the introduction of 48-bit
internal transaction IDs that are publicly (via the API and the MON$ tables) represented as 64-bit
numbers. This makes the new limit roughly equal to 2.8 * 10" transactions. Later, it could be
extended up to the 2% -1 limit.

The implemented solution has no additional storage overhead until the transaction counters grow
beyond the 2* boundary.

Limits Raised for Attachment and Statement IDs

Attachment IDs and statement IDs were changed to 64-bit numbers, both internally and externally
via the API and the MON$ tables.

System Tables

New System Tables

RDBSAUTH_MAPPING Stores authentication and other security mappings
RDB$PACKAGES Header for SQL packages
RDB$DB_CREATORS A list of users granted the “CREATE DATABASE” privilege when using

the specified security database

SEC$USERS Virtual table to query the local user list
SEC$USER_ATTRIBUTES Virtual table storing local user attributes
SEC$DB_CREATORS SQL interface to access the list in RDB§CREATORS, i.e. select * from

SEC$DB_CREATORS

SEC$GLOBAL_AUTH_MAPPING SQL interface to access the members of ROB$AUTH_MAPPING that have
access to all databases using the specified security database, i.e.
select * from SEC$GLOBAL_AUTH_MAPPING.

For information about authentication mapping, see Mapping of
Users to Objects in the Security chapter.

46

Chapter 4. Changes to the Firebird API and ODS
Changes to System Tables

From Firebird 3 forward, all non-virtual system tables (RDB$*) are read-only.

o In version 3.0.4, the read-only restriction was relaxed to permit CREATE, ALTER and
DROP operations on the indexes of system tables.

RDB$SYSTEM_FLAG

Claudio Valderrama C.

RDBS$SYSTEM_FLAG has been made NOT NULL in all tables.
CORE-2787.

RDBSTYPES

Dmitry Yemanov

Missing entries were added to RDB$TYPES. They describe the numeric values for these columns:

RDB$PARAMETER_TYPE (table RDB$PROCEDURE_PARAMETERS)
RDB$INDEX_INACTIVE (table RDB$INDICES)

RDB$UNIQUE_FLAG (table RDBSINDICES)

RDB$TRIGGER_INACTIVE (table RDB$TRIGGERS)

RDB$GRANT_OPTION (table RDBSUSER_PRIVILEGES)

RDB$PAGE _TYPE (table RDB$PAGES)

RDB$PRIVATE_FLAG (tables RDB$PROCEDURES and RDB$FUNCTIONS)
RDB$LEGACY_FLAG (table RDBSFUNCTIONS)

RDB$DETERMINISTIC_FLAG (table RDB$FUNCTIONS)

Monitoring Tables

Dmitry Yemanov

Changes to Client Address Reporting

Prior to Firebird 3.0, the network address of remote clients were reported in
MONSATTACHMENTS . MONSREMOTE _ADDRESS and RDB$GET_CONTEXT('SYSTEM', 'CLIENT_ADDRESS'). For TCP/IP
protocol (a.k.a. INET), it contained a TCPv4 dot-separated address. For Named Pipes (a.k.a. WNET,
NetBeui) protocol, it was always NULL. For shared memory (aka XNET) protocol, it contained the
local host name.

Starting with Firebird 3.0, the network address of a remote client contains the TCP/IP port number
of the remote client, separated with a slash:

<IP address>/<port>

The port number is also retrieved via the new built-in context variable RDB$GET_CONTEXT('SYSTEM',

47

http://tracker.firebirdsql.org/browse/CORE-2787

Chapter 4. Changes to the Firebird API and ODS

"CLIENT_PORT").

The host name is also reported now, in the new column MON$REMOTE_HOST.

Alert

The WNET (Named Pipes/Netbeui) protocol should be considered as deprecated. It
is likely to be abandoned in a future version.

Per-table performance counters added to the monitoring tables

Per-table performance counters have been added to all of the monitoring tables. See Tracker CORE-
4564.

Monitoring table changes

MONSATTACHMENTS

New information is now available:

Operating system user name. See Tracker CORE-3779.
* Protocol and client library version. See Tracker CORE-2780.

e Client host name. See Tracker CORE-2187.

Authentication method used for connection (MONSAUTH_METHOD). See Tracker CORE-4222.

MONS$REMOTE_ADDRESS now contains the <IP>/<port> string. See Tracker CORE-5028.

MONS$SDATABASE

» Database owner (MON$OWNER) added. See Tracker CORE-4218.

* Security database type (MON$SEC_DATABASE) flag added. Value will be one of Default/Self/Other. See
Tracker CORE-4729.

MONSSTATEMENTS

The PLAN is now included. See Tracker CORE-2303.

Application Programming Interfaces

A new public API replaces the legacy one in new applications, especially object-oriented ones. The
interface part can be found in the header file Interfaces.h in the directory /include/firebird
beneath the installation root directory.

0 POSIX installations have a symlink pointing to /usr/include/firebird/Interfaces.h

The new public API can be also used inside user-defined routines (UDR, q.v.) for callbacks inside the
engine, allowing a UDR to select or modify something in the database, for example.

The main difference between the new API and the legacy one is that UDRs can query and modify

48

http://tracker.firebirdsql.org/browse/CORE-4564
http://tracker.firebirdsql.org/browse/CORE-4564
http://tracker.firebirdsql.org/browse/CORE-3779
http://tracker.firebirdsql.org/browse/CORE-2780
http://tracker.firebirdsql.org/browse/CORE-2187
http://tracker.firebirdsql.org/browse/CORE-4222
http://tracker.firebirdsql.org/browse/CORE-5028
http://tracker.firebirdsql.org/browse/CORE-4218
http://tracker.firebirdsql.org/browse/CORE-4729
http://tracker.firebirdsql.org/browse/CORE-2303

Chapter 4. Changes to the Firebird API and ODS

data in the same connection or transaction context as the user query that called that UDR. It is now
possible to write external triggers and procedures, not just external functions (UDFs).

Interfaces and the New Object-oriented API

Alex Peshkov
Firebird needed a modernised API for a number of compelling reasons.

* High on the list was the limitation of the 16-bit integer pervading the legacy API, encompassing
message size, SQL operator length, BLOB data portions, to name a few examples. While 16-bit
was probably adequate when that old API came to life, in today’s environments it is costly to
work around.

A trivial solution might be to add new functions that support 32-bit variables. The big downside
is the obvious need to retain support for the old API by having pairs of functions with the same
functionality but differing integer sizes. In fact, we did something like this to support 64-bit
performance counters, for no better reason than being pressed to provide for it without having
a more elegant way to implement it.

* Another important reason, less obvious, derives from the era when Firebird’s predecessor,
InterBase, did not support SQL. It used a non-standard query language, GDML, to manage
databases. Data requests were transported between client and server using messages whose
formats were defined at request compilation time in BLR (binary language representation). In
SQL, the operator does not contain the description of the message format, so the decision was
taken to surround each message with a short BLR sequence describing its format.

The ISC API also has the XSQLDA layer over BLR. The trap with the XSQLDA solution is that it
encapsulates both the location of the data and their format, making it possible to change
location or format (or both) between fetch calls. Hence, the need for the BLR wrapping in every
fetch call —notwithstanding, this potential capability to change the data format between
fetches was broken in the network layer before Firebird existed.

To support the XSQLDA layer that rides on top of the message-based API, that lower level API
also has support sending format BLR at every turn.

This system involving calls processing data through multiple layers is hard to extend and wastes
performance; the SQLDA is not simple to use; the desire to fix it was strong.

* Other reasons—numerous but perhaps less demanding—for changing the API included
enhancing the status vector and optimizing dynamic library loading. Interfaces also make it so
much easier and more comfortable to use the messages API.

The Non-COM Choice

The new interfaces are not compatible with COM, deliberately, and the reasons have to do with
future performance enhancement.

At the centre of the Providers architecture in Firebird 3.0 is the y-valve, which is directed at
dispatching API calls to the correct provider. Amongst the potential providers are older ones with

49

Chapter 4. Changes to the Firebird API and ODS

potentially older interfaces. If we used COM, we would have to call the method IUnknown for each
call (including record fetch), just to ensure that the provider really had some newer API method.
Along with that comes the likelihood of future additions to the catalogue of API calls to optimize
performance. A COM-based solution does not play well with that.

Firebird interfaces, unlike COM, support multiple versions. The interface version is determined by
the total number of virtual functions it encompasses and is stored as a pointer-size integer at the
beginning of the virtual functions table. This makes it possible for very fast checking of the
interface version, since it requires no virtual call. That is to say, the pointer check has no overhead,
unlike COM.

The Hierarchy of Interfaces

A detailed discussion of all the functions presented by all the interfaces is outside the scope of this
overview. The general schematic looks like this:

|Versioned IMaster IPluginFactory

|Disposable IStatus

RefCounted g 1py 5inConfig
IPluginBase TR ExternalEngine

The base of the structure is IVersioned. It is the interface that enables a version upgrade. A lot of
interfaces not requiring additional lifetime control are based directly on IVersioned. IMaster is one
example already mentioned. Others include a number of callback interfaces whose lifetimes must
match the lifetimes of the objects from which they were to be used for callback.

Two interfaces deal with lifetime control: IDisposable and IRefCounted. The latter is especially active
in the creation of other interfaces: IPlugin is reference counted, as are many other interfaces that
are used by plug-ins. These include the interfaces that describe database attachment, transaction
management and SQL statements.

50

Chapter 4. Changes to the Firebird API and ODS

Not everything needs the extra overhead of a reference-counted interface. For example, IMaster, the
main interface that calls functions available to the rest of the API, has unlimited lifetime by
definition. For others, the API is defined strictly by the lifetime of a parent interface; the IStatus
interface is non-threaded. For interfaces with limited lifetimes, it is of benefit to have a simple way
to destroy them, that is, a dispose() function.

Each plug-in has one and only one main interface — IPlugin— which is responsible for basic plug-
in functionality. In fact, a lot of plugins have only this interface, although that is not a requirement.

Finally, there is IProvider, a kind of “main” plug-in in the Firebird API. IProvider is derived from
IPlugin and must be implemented by every provider. If you want to write your own provider you
must implement IProvider. It is implemented also by the y-valve: it is the y-valve implementation
that is returned to the user when the getDispatcher() function from the master interface is called.

IProvider contains functions enabling creation of an attachment to a database (attach and create)
or to the Services Manager.

Interfaces Q & A

1. We access new API using IMaster, but how to get access to IMaster itself?
This is done using just the one new API function fb_get_master_interface(). It is exported by the
fbclient library. Also, IMaster is passed as a parameter to each plug-in during its registration in
the system.

2. The non-use of COM-based interfaces was said to be to avoid working with TUnknown methods and
that this is done due to performance issues, instead you have to check the interface version. Why is
that faster than using IUnknown?

As was already mentioned, we do not need to execute virtual calls when checking the interface
version. Taking into an account that each virtual call means a reset of the CPU cache, it is an
important difference, especially for the very small calls like getting specific metadata properties
from IMetadata.

Other New APIs

Other new APIs support various plug-ins by declaring the interfaces between the engine and the
plug-in. Besides pluggable authentication and pluggable encryption, Firebird 3 supports “external
engines”, bridges between the engine and the execution environments that can run UDRs: native
code, Java and others. By and large they are intended for use by third-party solution providers,
rather than for client application development.

For creating custom plug-ins and bridges, the relevant interface (API) needs to be implemented in
the plug-in code.

API Improvements

The following improvements to the API should be noted.

Some SQL Size Limits Removed Using New API

Dmitry Yemanov

31

Chapter 4. Changes to the Firebird API and ODS
If and only if the new API is being used:

* The size of the body of a stored procedure or a trigger can exceed the traditional limit of 32 KB.
The theoretical limit provided by the new API is 4GB. At the moment—as a security
measure — a hard-coded limit of 10MB is imposed. The same limit of 10MB also applies to any
user-defined DSQL query.

» The total size of all input or output parameters for a stored procedure or a user-defined DSQL
query is no longer limited to the traditional size of (64KB minus overhead). The theoretical limit
provided by the new API is 4GB.

Legacy API

Improvements to the legacy API include:
Scrollable Cursor Support

Dmitry Yemanov

In PSQL, a scrollable cursor can be operated on directly to navigate flexibly from the current row to
any another row either forwards or backwards. API support is available to make scrollable cursors
available to DSQL applications.

Scrollable Cursor Usage

The result set must be opened with the flag IStatement: :CURSOR_TYPE_SCROLLABLE explicitly specified.

Fetch Methods

The following fetch methods of the IResultSet interface are available:

int fetchNext(IStatus* status, void* message);
// equivalent to FETCH NEXT FROM <cursor name>

Moves the cursor’s current position to the next row and returns it. If the cursor is empty or already
positioned at the last row, the condition NO_DATA is returned.

int fetchPrior(IStatus* status, void* message);
// equivalent to FETCH PRIOR FROM <cursor name>

Moves the cursor’s current position to the prior row and returns it. If the cursor is empty or already
positioned at the first row, the condition NO_DATA is returned.

int fetchFirst(IStatus* status, void* message);
// equivalent to FETCH FIRST FROM <cursor name>

Moves the cursor’s current position to the first row and returns it. If the cursor is empty, the
condition NO_DATA is returned.

52

Chapter 4. Changes to the Firebird API and ODS

int fetchlLast(IStatus* status, void* message);
// equivalent to FETCH LAST FROM <cursor name>

Moves the cursor’s current position to the last row and returns it. If the cursor is empty, the
condition NO_DATA is returned.

int fetchAbsolute(IStatus* status, int position, void* message);
// equivalent to FETCH ABSOLUTE <position> FROM <cursor name>

Moves the cursor’s current position to the specified position and returns the located row. If position
is beyond the cursor’s boundaries, the condition NO_DATA is returned.

int fetchRelative(IStatus* status, int offset, void* message);
// equivalent to FETCH RELATIVE <offset> FROM <cursor name>

Moves the cursor’s current position backward or forward by the specified offset and returns the
located row. If the calculated position is beyond the cursor’s boundaries, the condition NO_DATA is
returned.

1. When a scrolling option is omitted, NO SCROLL is implied (i.e. the cursor is
opened as forward-only). This means that only the fetchNext() API call can be
o used. Other fetch methods will return an error.

2. Scrollable cursors are internally materialized as a temporary record set, thus
consuming memory/disk resources, so this feature should be used only when
really necessary.

SPB Support for New Statistics Feature in gbak Output

Vlad Khorsun

A new, much requested feature was added to gbak verbose output: optional run-time statistics.
Read about it here. The feature is fully supported in the Services API with a new item in the SPB
(Services Parameter Block),

#define isc_spb_bkp_stat 15
along with its synonym
#define isc_spb_res_stat isc_spb_bkp_stat

Usage

33

Chapter 4. Changes to the Firebird API and ODS

isc_spb_bkp_stat, <len>, <string>
isc_spb_res_stat, <len>, <string>

where <len> (2 bytes) indicates the length of the following string parameter, and <string> (1-4 bytes)
is a string consisting of one character per statistics item.

The fbsvemgr utility also supports the new SPB tags.

Better Error Reports for String Overflows

Alex Peshkov

Include expected and actual string length in the error message for string overflows (SQLCODE -802).
More Detail in “Wrong Page Type" Error Reports

Alex Peshkov

More details in the error message "wrong page type", i.e. identifying expected and encountered
page types by name instead of numerical type.

New Item for isc_database_info() Call
Vlad Khorsun

An option was added to the API function isc_database_info() to return the number of free pages in
a database. See CORE-1538.

Compression and Encryption Status Info
Alex Peshkov
Added in Firebird 3.0.3, see CORE-5601.

Compression details and encryption status of a connection (fb_info_conn_flags) have been added to
the getInfo() API call. The data stored in the information block are of type integer in network
format, accessible as isc_vax_integer.

Currently only 2 bits are meaningful:

#define isc_dpb_addr_flag_conn_compressed 0x01
#define isc_dpb_addr_flag_conn_encrypted 0x02

New Services Tag for Overriding LINGER

Alex Peshkov

The Services API now includes the tag isc_spb_prp_nolinger, for example (in one line):

54

http://tracker.firebirdsql.org/browse/CORE-1538
http://tracker.firebirdsql.org/browse/CORE-5601

Chapter 4. Changes to the Firebird API and ODS

fbsvemgr host:service_mgr user sysdba password xxx
action_properties dbname employee prp_nolinger

For information regarding LINGER, see the write-up in the DDL chapter.

New Services and DPB Tags for ICU Version Changes

The Services API now includes the tag isc_spb_rpr_icu to update ICU-dependent collations and
rebuild dependent indices.

fbsvemgr host:service_mgr user sysdba password xxx
action_repair dbname employee rpr_icu

The same functionality is available to administrators by specifying database parameter buffer item
isc_dpb_reset_icu on connect to the database.

This functionality is also available through gfix, see gfix -icu switch.

Enable Use of ***_auth_plugin_list Item from Application

Firebird 3.0.4: To specify the names of authentication plug-ins, an application must create a config
string with “AuthClient = <plugin-list>”, along with lines for other options. A specific DPB/SPB
item actually exists, item isc_dpb_auth_plugin_list/isc_spb_auth_plugin_list that the client itself
uses to communicate the plug-in list to the server. However, if an application populated that same
item, it was ignored by the client.

This improvement allows an application to use the item item isc_dpb_auth_plugin_list
/isc_spb_auth_plugin_list in lieu of creating and passing a config string for it.

New Connection Formats for Local Superserver Clients on Windows

In previous Firebird versions, a serverless protocol known as “Windows Local” was available to
local clients connecting to Superserver on a Windows platform, using the XNET subsystem. A
typical connection string looked like this:

c:\Program Files\Firebird_2_5\examples\empbuild\employee.fdb

Under the new unified server, that form of connection attempts to load an embedded server. It is
no longer valid for a serverless client connection to Superserver. If you try, you will get a refusal
message to the effect “File is in use by another process”. This is not a bug. Since Superserver clients
share resources, another server (in this case, an embedded server) cannot attach a client to the
same database that Superserver has any clients attached to.

However, all is not lost. The XNET subsystem can still do local client sessions for Superserver. You
just need a more elaborate connection string now. You have a few choices:

* this one is the former “Windows local”, using the XNET subsystem and shared memory for a

55

Chapter 4. Changes to the Firebird API and ODS

(nominally) serverless connection:

xnet://alias-or-path-to-database

So, for our connection to the employee database:

xnet://c:\Program Files\Firebird_3_0\examples\empbuild\employee.fdb

or using an alias:

xnet://employee

* Connection to host/port via TCP:

inet://host:port/alias-or-path-to-database

* Connection to host/port via TCP, restricting the name search to IPv4:

inet4://host:port/alias-or-path-to-database

This option was added in version 3.0.1. See also the configuration parameter IPv6V60nly.

» Connection to host/port via Named Pipes (aka NetBEUI):

wnet://host:port/alias-or-path-to-database

* Connection to localhost via TCP:

inet://alias-or-path-to-database

* Connection to localhost via named pipes (aka NetBEUI):

wnet://alias-or-path-to-database

Perform Some Validation Services On-line

Vlad Khorsun
This feature was ported forward from Firebird 2.5.4.

Database validation enables low-level checks of the consistency of on-disk structures and even to

56

Chapter 4. Changes to the Firebird API and ODS

fix some minor corruptions. The recommended procedure for any valuable database is for the DBA
to validate a database periodically to ensure it is healthy.

Exclusive access to the database is required: any kind of concurrent access is forbidden during
validation. Sometimes, blocking user access could be a major hold-up, especially if the database is
large and complex.

Online validation is a new feature that allows some consistency checks to be performed without
exclusive access.

What Online Validation Can Do
+ validate some (or all) user tables in a database.
System tables are not validated.
« validate some (or all) indices
Other ODS checks, such as Header/PIP/TIP/Generators pages, are not performed.

Protection During Online Validation

While a table (and/or its index) is undergoing validation, user attachments are allowed to read this
table. Any attempt to change data (INSERT/UPDATE/DELETE) will wait until validation finishes or,
depending on the lock timeout of the user transaction, will return a lock timeout error.

Any kind of garbage collection on the table or its indexes is disabled whilst it is undergoing
validation:

* background and cooperative garbage collection will just skip this table

» sweep will be terminated with an error

When online validation starts to check a table, it acquires a couple of locks to prevent concurrent
modifications of its data:

* arelation lock in PR (protected read) mode

* (NEW) a garbage collection lock in PW (protected write) mode

Both locks are acquired using a user-specified lock timeout. An error is reported for any lock
request that fails and that table is skipped.

Once the locks are acquired, the table and its indexes are validated in the same way as a full
validation does it. The locks are released when it completes and the whole procedure is repeated
for the next table.

The New Services API action: isc_action_svc_validate

Online validation is implemented as a Firebird service and is accessed through the Services APIL
Thus, it cannot be run from the gfix utility.

The call involves the following elements:

57

Action:

Chapter 4. Changes to the Firebird API and ODS

isc_action_svc_validate

Parameters:

isc_spb_dbname :

database file name, string, mandatory

isc_spb_val_tab_incl, isc_spb_val_tab_excl,
isc_spb_val_idx_incl, isc_spb_val_idx_excl :
patterns for tables\indices names, string, optional

isc_spb_val_lock_timeout :
lock timeout, integer, optional

Output:

text messages with progress of online validation process

Using isc_action_svc_validate Interactively

The fbsvemgr utility has full support for the new service. The syntax is:

fbsvemgr [host:]service_mgr [user <...>] [password <...>]
action_validate dbname <filename>
[val_tab_incl <pattern>]
[val_tab_excl <pattern>]
[val_idx_incl <pattern>]
[val_idx_excl <pattern>]
[val_lock_timeout <number>]

where

val_tab_incl

val_tab_excl

val_idx_incl

val_idx_excl

val_lock_timeout

pattern for table names to include in validation run
pattern for table names to exclude from validation run

pattern for index names to include in validation run, by default %’, i.e. all
indexes

pattern for index names to exclude from validation run

lock timeout, used to acquire locks for table to validate, in seconds, default
is 10 secs. ‘@’ is no-wait, ‘-1’ is infinite wait

38

Chapter 4. Changes to the Firebird API and ODS

Usage Notes

» Patterns are regular expressions, processed by the same rules as SIMILAR T0
expressions.

 All patterns are case-sensitive, regardless of database dialect.
* If the pattern for tables is omitted then all user tables will be validated.

* If the pattern for indexes is omitted then all indexes of the appointed tables

o will be validated.

» System tables are not validated.
* To specify a list of tables or indexes:
a. Separate names with the pipe character ‘|’
b. Do not add spaces: “TAB1 | TAB2” is wrong, use “TAB1|TAB2”

c. Enclose the whole list in double quotes to avoid confusing the command
interpreter

Examples

1. Validate all tables in database c:\db.fdb with names starting with A. Indexes are not validated.
Lock wait is not performed.

fbsvemgr.exe service_mgr user SYSDBA password masterkey
action_validate dbname c:\db.fdb
val_tab_incl A%
val_idx_excl %
val_lock _timeout 0

2. Validate tables TAB1 and TAB2 and all their indexes. Lock wait timeout is 10 seconds (the default):

fbsvemgr.exe service_mgr user SYSDBA password masterkey
action_validate dbname c:\db.fdb
val_tab_incl "TAB1|TAB2"

3. Default behavior of val_XXX options: validate all user tables and their indexes in database
c:\db. fdb, lock wait is the default 10 seconds:

fbsvemgr.exe service_mgr user SYSDBA password masterkey
action_validate dbname c:\db.fdb

Code Improvement

Alex Peshkov

(CORE-4387) — The functions IStatement::execute() and IAttachment::execute() now return an
error pointer to the old transaction interface.

39

http://tracker.firebirdsql.org/browse/CORE-4387

Chapter 5. Reserved Words and Changes

Chapter 5. Reserved Words and Changes

New Keywords in Firebird 3.0

Reserved

Items marked with asterisks (*) were previously non-reserved.

BOOLEAN
COVAR_SAMP
FALSE

LOCALTIMESTAMP (since 3.0.4)
RDB$RECORD_VERSION

REGR_COUNT
REGR_SLOPE
REGR_SYY
SCROLL
STDDEV_SAMP
UPDATING *

Non-reserved

ABSOLUTE
ATANH

DDL
ENCRYPT
IDENTITY
LAG

NAME
PARTITION
RANK
SERVERWIDE
USAGE

CORR
DELETING *
INSERTING *

OFFSET
REGR_AVGX

REGR_INTERCEPT

REGR_SXX
RETURN
SQLSTATE
TRUE
VAR_POP

ACOSH
BODY
DECRYPT
ENGINE
INCREMENT
LEAD
NTH_VALUE
PLUGIN
RELATIVE
TAGS

60

COVAR_POP
DETERMINISTIC
LOCALTIME (since 3.0.4)
OVER

REGR_AVGY
REGR_R2
REGR_SXY
ROW
STDDEV_POP
UNKNOWN
VAR_SAMP

ASINH
CONTINUE
DENSE_RANK
FIRST_VALUE
LAST_VALUE
LINGER
PACKAGE
PRIOR
ROW_NUMBER
TRUSTED

Chapter 6. Configuration Additions and Changes

Chapter 6. Configuration Additions and
Changes

The file aliases.conf has been renamed to databases.conf. An old aliases.conf from a previous
version can simply be renamed, and the new engine will just continue to use it as before. However,
databases.conf can now include some configuration information for individual databases.

Scope of Parameters

Some parameters are marked as configurable per-database or per-connection.

» Per-database configuration is done in databases.conf.

* Per-connection configuration is primarily for client tool use and is done using the DPB
parameter isc_dpb_config or, for Services, the SPB parameter isc_spb_config.

* In the case of Embedded, the DPB can be used to tune per-database entries on first attaching to
a database.

Macro Substitution

A number of predefined macros (syntax $(name)) is available for use in the configuration files to
substitute for a directory name:

$(root)
Root directory of Firebird instance

$(install)

Directory where Firebird is installed. $(root) and $(install) are initially the same. $(root) can
be overridden by setting or altering the environment variable FIREBIRD, in which case it becomes
different from $(install).

$(this)

Directory where current configuration file is located

$(dir_conf)

Directory where firebird.conf and databases.conf are located

$(dir_secdb)

Directory where the default security database is located

$(dir_plugins)

Directory where plugins are located

$(dir_udf)
Directory where UDFs are located by default

61

Chapter 6. Configuration Additions and Changes

$(dir_sample)
Directory where samples are located

$(dir_sampledb)
Directory where sample DB (employee.fdb) is located

$(dir_intl)

Directory where international modules are located

$(dir_msq)
Directory where the messages file (firebird.msg) is located. $(dir_msg) usually should be the
same as $(root) but can be overridden by the environment variable FIREBIRD_MSG.

(o .
O You can observe the usage of some of these macros in databases.conf.
w

In our pre-built binaries, $(dir_conf) and $(dir_secdb) would normally be the
same as $(root) and $(install).

$(dir_plugins), $(dir_udf), $(dir_sample), $(dir_sampledb) and $(dir_intl) are
predefined sub-directories inside $(root).

o The build conventions are not “rules” that could be expected to apply in every
distribution of Firebird. Distro-specific Linux packages, for example, each prefer to
fit the Firebird components into standard layouts that comply with their own
conventions. As an illustration, user binaries, such as isql might be located in
/usr/bin, server binaries in /usr/sbin, configuration files in /etc/firebird.d and so
on. Obviously, $(root) would then make no sense, even if the $(dir_something)
macros still pointed to actual directories.

Includes

One configuration file can be included in another by using an “include” directive, e.g.,
include some_file.conf

A relative path is treated as relative to the enclosing configuration file. So, if our example above is
inside /opt/config/master.conf then our include refers to the file /opt/config/some_file.conf.

Wildcards

The standard wildcards “*’ and ‘?” may be used in an include directive, to include all matching files
in undefined order. For example,

include $(dir_plugins)/config/*.conf

62

Chapter 6. Configuration Additions and Changes

Expression of Parameter Values

Previously, byte values were specified by default as integer, representing the number of bytes.
However, now you can optionally specify them in Kilobytes, Megabytes or Gigabytes, as appropriate,
by adding ‘K’, ‘W or ‘@’ (case-insensitive). For example, “24M” is read as 25165824 (24 * 1024 * 1024).

Boolean values are expressed as non-zero (true)|zero (false) by default, but you may now use the

quoted strings 'y', 'yes' or 'true' instead of a non-zero digit.

“Per-database” Configuration

Custom configuration at database level is achieved with formal entries in databases.conf.

Format of Configuration Entries

In aliases.conf the format for specifying a database alias was
aliasname = /absolute/path/to/database_file

If you are not adding any database-specific configuration directives for an alias, the format is just
as it was before, e.g.,

emp = c:\Program Files\examples\empbuild\employee.fdb
or

emp = /opt/firebird/examples/empbuild/employee.fdb
or

emp = $(dir_sampleDb)/employee.fdb

A slightly more complex format is used for cases where certain non-global parameters are to be
targeted at an individual database. The entry for the database is defined by the alias declaration, as
previously. The database-specific directives are listed below it, within curly brackets.

#
Directives for MYBIGDB
MYBIGDB = opt/databases/mybigdb.fdb

{
LockMemSize = 32M # We know that MYBIGDB needs a lot of locks

LockHashSlots = 19927 # and a hash table large enough for them

Parameters Available

The following parameters can be copy/pasted to databases.conf and used as overrides for specific
databases.

Table 2. Parameters available in databases.conf

63

Chapter 6. Configuration Additions and Changes

Engine-related

DatabaseGrowthIncrement DeadlockTimeout DefaultDbCachePages
EventMemSize FileSystemCacheThreshold ExternalFileAccess

GCPolicy LockAcquireSpins LockHashSlots

LockMemSize MaxUnflushedWrites MaxUnflushedWriteTime
SecurityDatabase UserManager

WireCompression WireCrypt WireCryptPlugin

Client-related Some parameters can be configured at the client connection via the

DPB/SPB, as an alternative to configuring them in databases.conf.
to Scope of Parameters at the beginning of this chapter to
understand these differences.

AuthClient Providers
The following parameters can be configured only via the DPB/SPB

ConnectionTimeout DummyPacketInterval IpcName
RemoteAuxPort RemotePipeName RemoteServiceName
RemoteServicePort TCPNoNagle

New Parameters

New parameters added to firebird.conf are:

SecurityDatabase

Defines the name and location of the security database that stores login user names and passwords
used by the server to validate remote connections. By default, in firebird.conf, it is
$(root)/security3.fdb. It can be overridden for a specific database by a configuration in
databases.conf.

AuthServer and AuthClient

Two parameters that determine what authentication methods can be used by the network server
and the client redirector. The enabled methods are listed as string symbols separated by commas,
semicolons or spaces.

* Secure remote passwords (Srp), using the plug-in is the default, using the OS-appropriate plug-in
(1ibSrp.s@/Srp.d11/Srp.dylib)

* On Windows, the Security Support Provider Interface (Win_Sspi) is used when no login
credentials are supplied

* Client applications can use legacy authentication (Legacy_Auth) to talk to old servers.
For AuthServer, Srp and Win_Sspi are listed; for AuthClient, Srp, Win_Sspi and Legacy_Auth.
To disable a method, erase the comment marker (‘4#’) and remove the unwanted method from the

list.

64

Chapter 6. Configuration Additions and Changes

Both parameters can be used in databases.conf. They can both be used in the DPB or the SPB for a
connection-specific configuration.

WireCrypt

Sets whether the network connection should be encrypted. It has three possible values: Required |
Enabled | Disabled. The default is set such that encryption is Required for connections coming in to
the server and Enabled for connections outgoing to a server.

To access a server using an older client library and, thus, no encryption, WireCrypt in the server
configuration file should be set to Enabled or Disabled to avert the default Required.

The rules are simple: if one side has WireCrypt = Required and the other sets the parameter to
Disabled, the side with WireCrypt=Required rejects the connection and it is not established.

A missing WireCrypt plug-in or encryption key in cases where the channel must be encrypted also
thwarts a connection.

In all other cases, connection is established without encryption if at least one side has WireCrypt =
Disabled. In other cases, the encrypted connection is established.

UserManager

Sets the plug-in that will operate on the security database. It can be a list with blanks, commas or
semicolons as separators: the first plug-in from the list is used as the default.

The default plug-in is Srp (1ibSrp.s@/Srp.d11/Srp.dylib).

The UserManager parameter can be used in databases.conf for a database-specific override.

TracePlugin

Specifies the plug-in used by Firebird’s Trace facility to send trace data to the client app or audit
data to the log file.

The default plug-in is fbtrace (libfbtrace.s@/fbtrace.d11/fbtrace.dylib).

WireCryptPlugin
A wire-crypt plug-in is used to encrypt and decrypt data transferred over the network.

The installation default Arc4 implies use of an Alleged RC4 plug-in. The configured plug-in, which
requires a key generated by the configured authentication plug-in, can be overridden in the API for
a specific connection via the DPB or the SPB.

G For information about configuring plug-ins, see Configuring Plug-ins in the Engine
- chapter.

65

Chapter 6. Configuration Additions and Changes

KeyHolderPlugin

This parameter would represent some form of temporary storage for database encryption keys.
Nothing is implemented as a default plug-in, but a sample Linux plug-in named
libCryptKeyHolder_example.so can be found in /plugins/.

Providers

List of allowed transports for accessing databases, discussed in the Engine chapter.

ServerMode

Determines the execution mode of the server (“server model”). Discussed in the Engine chapter.

RemoteAccess

Parameter in firebird.conf and databases.conf provides an efficient, configurable replacement for
hard-coded rules limiting access to security3.fdb. It can also be used to configure limited remote
access to any other database, including non-default security databases.

By default RemoteAccess is enabled for all databases except the security database. If you intend using
more than one dedicated security database, then disabling remote access to it (or them) via
databases.conf is recommended.

For stricter security, server-wide, you can set RemoteAccess to false in firebird.conf and use entries
in database.conf to re-enable it for specific databases.

RemoteAccess is a Boolean. It can be expressed with either true/false, 1/0 or Yes/No.

WireCompression
Alex Peshkov

Parameter in firebird.conf or databases.conf, enabling or disabling compression of data over the
wire at global or individual database level.

The default setting is disabled (= False). Settings and environment must be correct at both server
and client for WireCompression to take effect:

* To enable it at the server side, in firebird.conf and/or databases.conf, change the setting to True
» To activate Wirecompression from the client side, pass the appropriate tag in the config item of
the DPB or SPB call:

isc_dbp_config/isc_sbp_config <string-length> "WireCompression=true"

» Both server and client versions must be Firebird 3 or greater (protocol >=13)

See Tracker itemmn CORE-733.

66

http://tracker.firebirdsql.org/browse/CORE-733

Chapter 6. Configuration Additions and Changes

IPv6V60nly

Michael Kubecek
Parameter in firebird.conf only. (TCP ports are created before any connection is established.)

Firebird 3 supports IPv6 connections, on both client and server sides.

Server

By default, the Firebird server listens on the zero IPv6 address (::) and accepts all incoming
connections, whether IPv4 or IPv6, and IPv6V60nly is set to false (=0). If it is set to true, the server,
still listening implicitly or explicitly on the zero IPv6 address, will accept only IPv6 connections.

A different listening address, either IPv4 or IPv6, can be set using the
RemoteBindAddress parameter. If an IPv4 address or a non-zero IPv6 address is
used, the IPv6V60nly directive has no effect.

o On POSIX platforms, in Classic mode, the parameters RemoteBindAddress,
RemoteServicePort and RemoteServiceName are ignored by fbserver, since the
listening socket is set up by (x)inetd. The listening address and/or port need to be
set in the (x)inetd.

IPv6V60nly is a Boolean. It can be expressed with either true/false, 1/0 or Yes/No.

Client

The standard text form of an IPv6 address uses the colon character to separate groups of digits
(upto 8 groups of digits). In the connection string, the IPv6 address must be enclosed in square
brackets, to resolve the ambiguity with the use of the colon as the separator between the host IP
address and the database path. For example:

connect '[2014:1234::5]:test’';
connect '[2014:1234::51/3049:/srv/firebird/test.fdb';

For consistency, square brackets can be optionally used around an IPv4 address or
a domain name.

o If a domain name is used in connection string, all addresses (IPv4 and IPv6) are
tried in the order returned by resolver until a connection is established. If all
attempts fail, the client fails to connect.

Parameters Changed or Enhanced

The following parameters have been changed or enhanced:

67

Chapter 6. Configuration Additions and Changes

ExternalFileAccess

Entries in the “Restrict” list of the ExternalFileAccess parameter can be used to mangle file names
with relative paths.

Entries in the “Restrict” list were already used to mangle file names with no path component. For
example, with

ExternalFileAccess = /opt/extern

and the following sequence of commands:

SQL> create table qq external file 'zz' (x int);

SQL> insert into qq values(1);
SQL> commit;

the file /opt/extern/zz will be created.

However, if something like this is submitted,
create table qq external file 'dir/zz' (x int);

the result is an error about denied access to file /opt/firebird/bin/dir/zz.

The improvement avoids this gap by mangling the file name in accord with the value of the
parameter and, if necessary, creating the missing path components, such as 'dir' in the example
above.

Parameters Removed or Deprecated

The following parameters have been removed or deprecated:

RootDirectory

In older version, this parameter provided a superfluous option for recording the file system path to
Firebird’s “root” files (firebird.conf, the security database and so on).

LegacyHash

This parameter used to make it possible to use the old security.fdb from Firebird 1.X installations
after it had been subjected to an upgrade script and thence to enable or disable use of the obsolete
DES hash encrypting algorithm. It is no longer supported.

OldSetClauseSemantics

This parameter enabled temporary support for an implementation fault in certain sequences of SET

68

Chapter 6. Configuration Additions and Changes

clauses in versions of Firebird prior to version 2.5. It is no longer available.

OldColumnNaming

This parameter temporarily enabled legacy code support for an old InterBase/Firebird 1.0 bug that
generated unnamed columns for computed output which was not explicitly aliased in the SELECT
specification. It is no longer available.

LockGrantOrder

This parameter used to allow the option to have Firebird’s Lock Manager emulate InterBase v3.3
lock allocation behaviour, whereby locks would be granted in no particular order, as soon as they
were available, rather than by the normal order (first-come, first-served). The legacy option is no
longer supported.

Obsolete Windows priority settings

UsePriorityScheduler, PrioritySwitchDelay and PriorityBoost, which were marginally relevant to
obsolete processors on obsolete Windows versions, are no longer supported.

69

Chapter 7. Security

Chapter 7. Security

Security improvements in Firebird 3 include:

Location of User Lists
Alex Peshkov
CORE-685

Firebird now supports an unlimited number of security databases. Any database may act as a
security database and can be a security database for itself.

Use databases.conf to configure a non-default security database. This example configures
/mnt/storage/private.security.fdb as the security database for the first and second databases:

first = /mnt/storage/first.fdb

{

SecurityDatabase = /mnt/storage/private.security.fdb
}
second = /mnt/storage/second.fdb
{

SecurityDatabase = /mnt/storage/private.security.fdb
}

Here we use a third database as its own security database:

third = /mnt/storage/third.fdb

{
SecurityDatabase = third
}
o The value of the SecurityDatabase parameter can be a database alias or the actual
database path.

Creating an Alternative Security Database

To start using a separate, non-default security database, the first step is to create it, unless it already
exists. An embedded isqgl connection is used:

> isql -user sysdba
SQL> create database '/mnt/storage/private.security.fdb’;

Now connect to any database which will be served by the security database you are currently

70

http://tracker.firebirdsql.org/browse/CORE-685

Chapter 7. Security
preparing, in order to create its SYSDBA user:
SQL> connect first;
SQL> create user sysdba password 'sysdba-in-private-security-password';

SQL> commit;
SQL> exit;

Database Encryption
Alex Peshkov
CORE-657

With Firebird 3 comes the ability to encrypt data stored in database. Not all of the database file is
encrypted: just data, index and blob pages.

To make it possible to encrypt a database you need to obtain or write a database crypt plug-in.

o The sample crypt plug-in in examples/dbcrypt does not perform real encryption, it
is merely a sample of how to go about it.

Secret Key

The main problem with database encryption is how to store the secret key. Firebird provides a
helper to transfer that key from the client but that does not imply that storing the key on a client is
the best way: it is no more than a possible alternative. A very bad option is to keep the key on the
same disk as the database.

Encryption Tasks

To separate encryption and key access efficiently, a database crypt plug-in is split into two parts:
encryption itself and the secret key holder. This may be an efficient approach for third-party plug-
ins when you want to use some good encryption algorithm, but you have your own secret way to
store a key.

Encrypting a Database
Once you have decided on a crypt plug-in and a key, you can encrypt the database with:

ALTER DATABASE ENCRYPT WITH <PLUGIN_NAME> [KEY <key-name>]

The optional KEY argument allows the key name to be passed in the command, if the plug-in
requires it.

Encryption will start right after this statement commits and will be performed in background.
Normal database activity is not disturbed during encryption.

71

http://tracker.firebirdsql.org/browse/CORE-657

Chapter 7. Security
Monitoring Encryption

During encryption, progress can be monitored using the field MON§CRYPT_PAGE in the pseudo-table
MON$DATABASE. For example:

select MON$CRYPT PAGE * 100 / MON$PAGES
from MON$DATABASE

The example query will output the percentage of encryption completed so far.

You can also watch the database header page using repeated calls to gstat -e. If the database has
been encrypted, gstat -h can also provide limited information about encryption state.

Decrypting a Database

To decrypt the database do:
ALTER DATABASE DECRYPT

For Linux, an example plug-in named 1ibDbCrypt_example.so can be found in the /plugins/ sub-
directory.

New Authentication Method in Firebird 3
Alex Peshkov

All of the code related to authentication is plug-in-enabled. Though Firebird performs the generic
work, like extracting authentication data from a network message or putting it into such messages
as appropriate, all the activity related to calculating hashes, storing data in databases or elsewhere,
using specific prime numbers and so on is done by plug-ins.

Firebird 3 has new method of user authentication implemented as a default plugin: secure remote
password (SRP) protocol. Quoting from Wikipedia:

The SRP protocol creates a large private key shared between the two parties
in a manner similar to Diffie-Hellman key exchange, then verifies to both
parties that the two keys are identical and that both sides have the user’s
password. In cases where encrypted communications as well as
authentication are required, the SRP protocol is more secure than the
alternative SSH protocol and faster than using Diffie-Hellman key exchange
with signed messages. It is also independent of third parties, unlike
Kerberos.

SSH needs key pre-exchange between server and client when placing a public key on the server to

make it work. SRP does not need that. All a client needs are login and password. All exchange
happens when the connection is established.

72

https://en.wikipedia.org/wiki/Secure_Remote_Password_protocol

Chapter 7. Security

Moreover, SRP is resistant to “man-in-the-middle” attacks.

Use of the new authentication method is not compatible with old security
databases and passwords from them. However, an upgrade procedure is available
to migrate users from a Firebird 2.x security2.fdb database. For instructions, see
Upgrading a v.2.x Security Database in the Compatibility chapter.

o Use of an old security database can be supported with the Legacy_Auth
authentication plug-in, but this Kkills the security benefits of Firebird 3.

The Firebird 3 client is built to make it possible to talk to old servers with the
default configuration.

SSL/TLS Support

CORE-3251

So, the answer to the question “Does Firebird use SSL/TLS for password validation?” is “yes and
no”. The “No” answer comes because, by default, SSL is not used. That is due to a minor licensing
incompatibility between Firebird and OpenSSL, the most popular SSL implementation.

The “Yes” applies because anyone is free to write an authentication plug-in that uses SSL and TLS.

Increased Password Length
CORE-1898.

Implementation of SRP in our plugin has increased the password length from 8 bytes to 20 or more.
Because of the use of SHA1 for hashes, maximum security is provided for passwords up to 20
characters in length. Longer passwords can be used without restriction but there is a remote
possibility of hash collisions between passwords that differ beyond the 20th byte. Just be aware of
the possibility that any password longer than 20 characters password could share the same hash
with some shorter password so, theoretically, they could be attacked using brute force.

A custom SRP plug-in could be built quite easily, using a hash algorithm that would guarantee
unique hashes for longer passwords.

The increased length limit means the default SYSDBA password in Windows and
(;) MacOS installations is the full 'masterkey' string (9 chars), no longer 'masterke’ (8

chars) as in older versions!

Support for the LegacyHash and Authentication parameters in firebird.conf has been dropped.
Authentication is overtaken by an AuthServer parameter in firebird.conf or elsewhere.

The Authentication Plug-in

The Authentication plug-in comprises three parts:

73

http://tracker.firebirdsql.org/browse/CORE-3251
http://tracker.firebirdsql.org/browse/CORE-1898

Chapter 7. Security

Client prepares data at the client to be sent to server on client
Server validates password for correctness

User Manager adds, modifies and deletes users on the server. It is not needed if some

external authentication method, such as Windows trusted authentication, is
used.

All three parts are actually separate plug-ins which should be configured separately in
firebird.conf. Let’s look at an example of configuring a server to accept connections from old
clients. The default setting are:

AuthServer = Srp, Win_Sspi
UserManager = Srp

To enable access from old clients, AuthServer needs to be changed:
AuthServer = Srp, Win_Sspi, Legacy_Auth
If we also want to manage the list of users in the old format we must add:

UserManager = Legacy_UserManager

o Setting UserManager to only Legacy_UserManager will disable to option to manage Srp
users. See the next section for details on allowing both to be managed.

Multiple User Managers

Multiple user managers can be enumerated in firebird.conf. The first member of the list of user
managers is the default. Selecting from SEC$USERS would produce something like the following:

74

Chapter 7. Security

SQL> select SEC$USER_NAME, SEC$PLUGIN from sec$users;

SECSUSER_NAME SEC$PLUGIN
SYSDBA Legacy_UserManager
SYSDBA Srp
QA_USER1 Srp
QA_USER2 Srp
QA_USER3 Srp
QA_USER4 Srp
QA_USER5 Srp

GUEST Srp

SHUT1 Srp

SHUT?2 Srp

QATEST Srp

There might well be two users named SYSDBA in such a list, because each user manager has its own
SYSDBA.

o All user management commands can have the USING PLUGIN clause, whose
purpose is to enable selection of a particular UserManager plug-in from the list
in firebird.conf.

o * The default user manager in firebird.conf is Srp. If you need to manage legacy
logins, add Legacy_UserManager to UserManager, e.g. UserManager =
Legacy_UserManager, Srp.

* UserManager can be configured at database level, in databases.conf.

V. 3.0.4 SRP Security Patch

Alex Peshkov; Tony Whyman

Review of the Firebird SRP implementation in terms of the NIST guidance on the use of SHA-1
appears to indicate that most uses of SHA-1 continue to be permitted except for its use in generating
the client proof.

The SHA-256 message digest may be used instead of SHA-1 for generating the client proof. For
compatibility, SHA-1 remains the default for Firebird 3 but SHA-256 is available as an alternative
from version 3.0.4 onward, until the decision is taken to make it the default.

Plug-Ins

Separate AuthServer and AuthClient plugins are available for each supported message digest, with
the following names:

Srp SHA-1 Client Proof

75

Chapter 7. Security

Srp256 SHA-256 Client Proof

Both client and server must have an SRP authentication plug-in in common for authentication of a
user’s password to succeed.

Configuration Details

The SRP UserManager is still called “Srp” and it is unchanged. Neither the user manager nor the
security database is affected by the choice of message digest used to compute the client proof.

The default configuration file entries in firebird.conf for AuthServer and AuthClient are now:

AuthServer = Srp All platforms
AuthClient = Srp, Srp256, Legacy_Auth POSIX clients
AuthClient = Srp, Srp256, Win_Sspi, Legacy_Auth Windows clients

With these settings, a Firebird client can use SRP to authenticate using either SHA-256 or SHA-1 to
compute the client proof and is thus backwards-compatible with Firebird 3 servers.

Beware!

A deployment where both clients and server support both the legacy Srp (using

A SHA-1) and the Srp256 SHA-256 authentication plug-ins should be avoided, as it
might enable an attacker to disrupt the Srp256 authentication, thereby forcing
Firebird to use the weaker Srp SHA-1 client proof without the user being aware of
it.

For a more detailed description, please read the document /doc/README. SecureRemotePassword.html
in your Firebird 3.0.4 installation.

NIST Compliance

If you need NIST compliance and/or higher security you can set
AuthServer = Srp256

This will break compatibility with pre-3.0.4 clients.

"Over the wire" Connection Encryption
Alex Peshkov
CORE-672 ...

All network traffic in Firebird 3 may be optionally encrypted. As with authentication, plug-ins are
used for encrypting and decrypting network traffic.

The default plug-in is arc4 (Alleged RC4). It is eminently possible to write your own crypt plug-in to

76

http://tracker.firebirdsql.org/browse/CORE-672

Chapter 7. Security

encrypt data travelling over the wire. Whatever you use for your plug-in, it is necessary to use the
Firebird 3 version of the fbclient library.

The Secret Session Key

The challenge with use of a symmetric cypher is where to get a key for it. Firebird assumes that
such a key, also called a secret session key, is produced by the authentication plug-in at the
connection establishment phase. SRP meets this requirement just fine by producing a
cryptographically strong session key.

If you want to use encryption with an authentication plug-in that does not provide

@ the session key and agree to use some pre-defined key, say, one stored at the client

- side as a file and on the server in the security database for that specific client, then
make that plug-in inform Firebird that it does have a session key.

Specifications for the Key

Specifications for the key’s size, its format, how it is calculated and verified, etc., are not
generalised. The key’s format and other details are specific to the wire encryption/decryption plug-
in.

In particular, RC4 uses a symmetric key which can have any length, while the key produced by SRP
has a length of 20 bytes. That key is a SHA-1 hash on SRP’s session key and some other SRP-related
things, such as user name.

Exporting a Key from an Authentication Plug-in

To export a key from your authentication plug-in, use the ServerBlock or the ClientBlock interface.
One of these is always passed to the server/client part of an authentication plug-in. Both have a
“newKey” method that returns a pointer to the CryptKey interface. That interface in turn has the
methods setSymmetric and setAsymmetric for storing the symmetric or asymmetric key in the
interface, i.e., exporting that key.

Mapping of Users to Objects
Alex Peshkov

Firebird 3 introduces new SQL privileges to map access between users and groups and security
objects and between databases. See Tracker itemm CORE-1900.

With Firebird now supporting multiple security databases, some new problems arise that could not
occur with a single, global security database. Clusters of databases using the same security database
were efficiently separated. Mappings provide the means to achieve the same efficiency when
multiple databases are using their own security databases. Some cases require control for limited
interaction between such clusters. For example:

* when EXECUTE STATEMENT ON EXTERNAL DATA SOURCE requires some data exchange between
clusters

» when server-wide SYSDBA access to databases is needed from other clusters, using services.

77

http://tracker.firebirdsql.org/browse/CORE-1900

Chapter 7. Security

» comparable problems that have existed on Firebird 2.1 and 2.5 for Windows, due to support for
Trusted User authentication: two separate lists of users—one in the security database and
another in Windows, with cases where it was necessary to relate them. An example is the
demand for a ROLE granted to a Windows group to be assigned automatically to members of that

group.

The single solution for all such cases is mapping the login information assigned to a user when it
connects to a Firebird server to internal security objects in a database — CURRENT_USER and
CURRENT_ROLE.

The Mapping Rule
The mapping rule consists of four pieces of information:
1. mapping scope —whether the mapping is local to the current database or whether its effect is
to be global, affecting all databases in the cluster, including security databases
2. mapping name — an SQL identifier, since mappings are objects in a database, like any other
3. the object FROM which the mapping maps. It consists of four items:
o The authentication source
» plug-in name or
= the product of a mapping in another database or
= use of server-wide authentication or
= any method
- The name of the database where authentication succeeded
o The name of the object from which mapping is performed
o The type of that name —user name | role | OS group — depending upon the plug-in that
added that name during authentication.

Any item is accepted but only type is required.

4. the object TO which the mapping maps. It consists of two items:
o The name of the object TO which mapping is performed

o The type, for which only USER or ROLE is valid

Syntax for MAPPING Objects

Mappings are defined using the following set of DDL statements:

78

Chapter 7. Security

{CREATE | ALTER | CREATE OR ALTER} [GLOBAL] MAPPING name
USING {
PLUGIN name [IN database] | ANY PLUGIN [IN database | SERVERWIDE] |
MAPPING [IN database] | '*' [IN database]}
FROM {ANY type | type name}
TO {USER | ROLE} [name]

DROP [GLOBAL] MAPPING name

Description

* Any mapping may be tagged as GLOBAL.

Global mapping works best if a Firebird 3 or higher version database is used as the security
database. If you plan to use another database for this purpose — using your own provider, for
example —then you should create a table in it named RDB$MAP, with the same structure as
RDB$MAP in a Firebird 3 database and with SYSDBA-only write access.

Beware!

A If global and local mappings of the same name exist then know and make it
known that they are different objects!

» The CREATE, ALTER and CREATE OR ALTER statements use the same set of options. The name
(identifier) of a mapping is used to identify it, as in other DDL command sets.

» The USING clause has a highly complicated set of options:
o an explicit plug-in name means it will work only for that plug-in

o it can use any available plug-in; although not if the source is the product of a previous
mapping

o it can be made to work only with server-wide plug-ins
o it can be made to work only with previous mapping results
o it can be left to use any method, using the asterisk (*) argument

o it can be provided with the name of the database that originated the mapping for the FROM
object

0 This argument is not valid for mapping server-wide authentication.

» The FROM clause takes a mandatory argument, the type of the object named.

- When mapping names from plug-ins, type is defined by the plug-in.

- When mapping the product of a previous mapping, type can be only USER or ROLE.
- If an explicit name is provided, it will be taken into account by this mapping

- Use the ANY keyword to work with any name of the given type.

* In the TO clause, the USER or ROLE to which the mapping is made must be specified. name is
optional: if it is not supplied, the name from the originating mapping is used.

79

Chapter 7. Security
Examples

The examples use the CREATE syntax. Usage of ALTER is exactly the same and the usage of DROP should
be obvious.

1. Enable use of Windows trusted authentication in all databases that use the current security
database:

CREATE GLOBAL MAPPING TRUSTED_AUTH
USING PLUGIN WIN_SSPI
FROM ANY USER
TO USER;

2. Enable SYSDBA-like access for windows admins in current database:

CREATE MAPPING WIN_ADMINS
USING PLUGIN WIN_SSPI
FROM Predefined_Group
DOMAIN_ANY_RID_ADMINS
TO ROLE RDB$ADMIN;

The group DOMAIN_ANY_RID_ADMINS does not exist in Windows, but such a name
o would be added by the Win_Sspi plug-in to provide exact backwards
compatibility.

3. Enable a particular user from another database to access the current database with another
name:

CREATE MAPPING FROM_RT
USING PLUGIN SRP IN "rt"
FROM USER U1 TO USER U2;

o Database names or aliases will need to be enclosed in double quotes on
operating systems that have case-sensitive file names.

4. Enable the server’s SYSDBA (from the main security database) to access the current database.
(Assume that the database is using a non-default security database):

CREATE MAPPING DEF_SYSDBA
USING PLUGIN SRP IN "security.db"
FROM USER SYSDBA
TO USER;

5. Ensure users who logged in using the legacy authentication plug-in do not have too many
privileges:

80

Chapter 7. Security

CREATE MAPPING LEGACY_2_GUEST
USING PLUGIN Tlegacy_auth
FROM ANY USER
TO USER GUEST;

Legacy Mapping Rule

Previous versions of Firebird have one hard-coded global default rule: users authenticated in the
security database are always mapped into any database one-to-one. It is a safe rule: it makes no
sense for a security database not to trust itself!

For backward compatibility this rule is retained in Firebird 3.

Generic mapping is used to set the rule defining the user name under which the user accesses a
database when performing a request from a database using one security database to a database
using a different one, or when server-wide authentication, such as Win_Sspi, is used. The rule comes
into action whenever the Firebird engine is processing the authentication block associated with a
request to connect to a database.

Mapping Trusted Users to CURRENT_USER and CURRENT_ROLE

Each record in an authentication block contains the name of the plug-in that added it, the type of
record (user name, OS group, role, etc.), the name of an object of the specified type (user SYSDBA,
role PUBLIC, group DOMAIN_ADMINS) and the name of the security database in which
authentication took place. Under server-wide authentication, the security database name could be
NULL. The mapping rule assesses all these parameters to define the value to assign to CURRENT_USER
and CURRENT_ROLE in the resulting attachment.

In Firebird 3, an explicit mapping must exist in systems with server-wide “trusted user”
authentication enabled, including Win_Sspi authentication on Windows, in order for the system
user’s user name to be assigned to the context variables CURRENT_USER and CURRENT_ROLE.

International Character Sets for User Accounts
Alex Peshkov

For creating user names and passwords, the new authentication plug-ins bring a degree of
flexibility with regard to character sets. To make use of international credentials support, it is
necessary to use SRP or any other set of authentication plug-ins that supports the new model.

Advice

Use of the legacy authentication plug-in is not recommended, except where it is
A necessary for connecting a client to a server version older than Firebird 3. Legacy

authentication has never supported international characters in user names and

passwords. This restriction is unchanged for Firebird 3 legacy authentication.

When writing authentication plug-ins it is unnecessary to be concerned about character sets, since

81

Chapter 7. Security

all data exchange with the new plug-ins is done using UTFS8. Just be prepared to handle user names
and passwords that contain characters beyond the range of the 7-bit ASCII character subset.

Conditions for Non-ASCII Logins

The simple rule to follow for using non-ASCII user names and passwords is that the character set
and code page selected in the client for SQL input must match those in which the credentials are
stored on the server and, obviously, the credentials must be supplied in the specified character set.
On POSIX terminals and most GUI clients this condition is satisfied. However, there are three fairly
common situations where problems could arise:

1. connecting via a Windows text console with the default OEM code page selected
2. omitting the SET NAMES command in isql

3. running scripts
Examining these situations in more detail:

1. All operating systems except Windows use same the same character set (code page, locale), by
default, for all programs. In Windows, for historical reasons, GUI applications use an ANSI code
page, but applications started on the command-line console emulator use the corresponding
OEM code page. As an example, the Russian version of Windows is uses code page 1251 (ANSI
Russian) for GUI applications and code page 866 (OEM Russian) for command-line applications.

The Firebird client always uses the ANSI code page. In order to provide the fully functional
behaviour of a console application, the console must be switched to the ANSI codepage (chcp
1251 for our Russian example).

The Windows weirdness does not stop there. Parameters passed to a Windows application, but
not to 16-bit DOS, are always passed in the ANSI encoding, even if it was started from a
command-line console running in the default OEM mode. This might give the illusion that
Firebird utilities run correctly out-of-the-box on an OEM console. However, they run correctly
only as far as the international information supplied in a command line, e.g.,

C:> isql server:database -user <intl-login> -pas <intl-password>

This works. However, as soon as you try to use a CONNECT or CREATE DATABASE command inside
isql, or to enter the password from the OEM terminal, you will encounter problems. This is
inconvenient and we apologise for that. The OEM console issues are in the plan to be fixed in a
future version.

2. Currently, command-line parameters and the CONNECT and CREATE DATABASE commands in isql are
not affected by SET NAMES or the -CHarset parameter. All the other commands, particularly
CREATE/ALTER/DROP USER, are affected by them and thus, the character set must be specified. This
is very important because, in future versions, the plan is to make all usage of international
credentials depend on a character set that is explicitly specified.

Take careful note of one very confusing use case, an attempt to set a non-ASCII password for the
current user:

82

Chapter 7. Security
SQL> alter current user set password '<intl-password>';

This command will succeed, even if the character set has not been set correctly. However, a
subsequent attempt to log in with the modified password will fail.

. In scripts, the first requirement is to set the correct character set for the SQL server that is to
run the script, using a SET NAMES statement. For Firebird 3, it is essential to pay attention to the
locale and code page settings in the environment in which the script is to execute. They must
match the character set that is set in the script.

Setting the locale correctly affects particularly the credentials passed to the server when
attaching to it. The rest of the script should proceed successfully even without configuring the
environment properly.

In summary, if you plan to use international character credentials in the script, you DO need to
attend to the international settings in your environment.

Reminder

o User names are SQL identifiers and thus conform to the same rules, i.e. enclosed in
double quotes when containing international characters or when case-sensitivity
is required.

SQL Features for Managing Access

Changes in architecture, stiffening of rules for security and data integrity, along with a bucket list of

feature requests, have given rise in this release to a number of new SQL commands for managing
users and access to objects.

SQL-driven User Management

Alex Peshkov

The SQL set of DDL commands for managing user accounts has been enhanced in Firebird 3, thus

improving the capability to manage (add, modify or delete) users in a security database from a

regular database attachment.

Syntax

CREATE USER username [<options_list>]
TAGS (<tag> [, <tag> ...])
ALTER USER username [SET] [<options_list>]
TAGS (<tag> [, <tag> ...])
ALTER CURRENT USER [SET] [<options_list>]
TAGS (<tag> [, <tag> ...])
CREATE OR ALTER USER username [SET] [<options_list>]
TAGS (<tag> [, <tag> ...])
DROP USER username [USING PLUGIN plugin_name]

83

Chapter 7. Security
<options_list> is a (possibly empty) list with the following options:
PASSWORD 'password'
FIRSTNAME 'string value'
MIDDLENAME 'string value'
LASTNAME 'string value'
ACTIVE

INACTIVE
USING PLUGIN plugin_name

Each <tag> may have one of two forms:
tagname = 'string value'
or the DROP tagname tag form to remove a user-defined attribute entirely:

DROP tagname

o The tagname side of the name/value pair can be any valid SQL identifier.

Older Methods Deprecated

From Firebird 3.0, multiple security databases are supported. This capability is not supported by
either the gsec utility or the Services API. Use of both of these methods is deprecated.

Usage Details

The CREATE USER, CREATE OR ALTER USER and DROP USER clauses are available only for SYSDBA or
another user granted the RDB$ADMIN role in the security database (and logged in under that role, of
course.)

The PASSWORD clause is required when creating a new user.

An ordinary user can ALTER their own password, real name attributes and tags. Any attempt to
modify another user will fail, as will an attempt to make “self” inactive or active.

If you want to modify “self”, you can use the simplified form ALTER CURRENT USER.

At least one of PASSWORD, FIRSTNAME, MIDDLENAME, LASTNAME, ACTIVE, INACTIVE or TAGS must be present in
an ALTER USER or CREATE OR ALTER USER statement.

It is not a requirement to use any of the clauses FIRSTNAME, MIDDLENAME and LASTNAME. Any of them
may be left empty or used to store short information about the user.

The INACTIVE clause is used to disable the user’s login capability without dropping it. The ACTIVE
clause restores that login ability.

84

Chapter 7. Security

Quick Tip

a
Q From version 3.0.1, the statement CREATE OR ALTER USER SYSDBA PASSWORD password
can be used to initialize an empty securityN. fdb security database.

TAGS is a list of end-user defined attributes. The length of the string value should not exceed 255
bytes.

Setting a list of tags for the user retains previously set tags if they are not mentioned in the current
list.

o A UID or GID that was entered by the deprecated gsec utility is treated as a tag in
the SQL interface.
Examples

Generic:

CREATE USER superhero PASSWORD 'test';

ALTER USER superhero SET FIRSTNAME 'Clark' LASTNAME 'Kent';
CREATE OR ALTER USER superhero SET PASSWORD 'IdQfA';

DROP USER superhero;

ALTER CURRENT USER SET PASSWORD 'SomethinglLongEnough';

Working with tags:

ALTER USER superhero SET TAGS (a='a', b='b");

NAME VALUE
A a
B b

ALTER USER superhero SET TAGS (b="x", c='d");

NAME VALUE
A

B X

C d

NAME VALUE
B X
C sample

Displaying the list of users:

85

Chapter 7. Security

SELECT CAST(U.SEC$USER_NAME AS CHAR(20)) LOGIN,
CAST(A.SECSKEY AS CHAR(10)) TAG,
CAST(A.SEC$VALUE AS CHAR(20)) "VALUE",
SEC$PLUGIN "PLUGIN"

FROM SEC$USERS U LEFT JOIN SEC$USER_ATTRIBUTES A
ON U.SEC$USER_NAME = A.SEC$USER_NAME;

LOGIN TAG VALUE PLUGIN

SYSDBA <null> <null> Srp

SUPERHERO B X Srp

SUPERHERO C sample Srp

SYSDBA <null> <null> Legacy_UserManager

o Output depends upon the user management plug-in. If the legacy plug-in is used,
bear in mind that some options are not supported and will simply be ignored

SET ROLE
Alex Peshkov
See Tracker itemm CORE-1377.

The SQL:2008-compliant operator SET ROLE allows the CURRENT_ROLE context variable to be set to one
that has been granted to the CURRENT_USER or to a user assigned to the database attachment as
trusted (SET TRUSTED ROLE).

Syntax for SET ROLE

Enable CURRENT_USER access to a role that has been previously granted:
SET ROLE rolename

Example of SET ROLE Usage

SET ROLE manager;
select current_role from rdb$database;

Displays:

MANAGER

86

http://tracker.firebirdsql.org/browse/CORE-1377

Chapter 7. Security
SET TRUSTED ROLE

The idea of a separate SET TRUSTED ROLE command is that, when the trusted user attaches to a
database without providing any role info, SET TRUSTED ROLE makes a trusted role (if one exists) the
CURRENT_ROLE without any additional activity, such as setting it in the DPB.

A trusted role is not a specific type of role but may be any role that was created using CREATE ROLE,
or a predefined system role such as RDB§ADMIN. It becomes a trusted role for an attachment when the
security objects mapping subsystem finds a match between the authentication result passed from
the plug-in and a local or global mapping for the current database. The role may be one that is not
even granted explicitly to that trusted user.

* A trusted role is not assigned to the attachment by default. It is possible to
change this behaviour using an appropriate authentication plug-in and a
o CREATE/ALTER MAPPING command.

* Whilst the CURRENT_ROLE can be changed using SET ROLE, it is not always possible
to revert using the same command, because it performs an access rights check.

Syntax Pattern

Enable access to a trusted role, if the CURRENT_USER is logged in under Trusted User authentication
and the role is available:

SET TRUSTED ROLE

An example of the use of a trusted role is assigning the system role RDB$ADMIN to a Windows
administrator when Windows trusted authentication is in use.

GRANT/REVOKE Rights GRANTED BY Specified User

Alex Peshkov

Previously, the grantor or revoker of SQL privileges was always the current user. This change
makes it so that a different grantor or revoker can be specified in GRANT and REVOKE commands.

Syntax

GRANT <right> TO <object> [{ GRANTED BY | AS } [USER] username]
REVOKE <right> FROM <object> [{ GRANTED BY | AS } [USER] username]

The GRANTED BY clause form is recommended by the SQL standard. The alternative form using AS is
supported by Informix and possibly some other servers and is included for better compatibility.

87

Chapter 7. Security

Example (working as SYSDBA)

create role r1;
grant r1 to user1 with admin option;
grant r1 to public granted by user?;

-- (in isql)

show grant;

/* Grant permissions for this database */
GRANT RT TO PUBLIC GRANTED BY USER1

GRANT R1 TO USERT WITH ADMIN OPTION

REVOKE ALL ON ALL

When a user is removed from the security database or another authentication source, this new
command is useful for revoking its access to all objects in the database.

Syntax

REVOKE ALL ON ALL FROM [USER] username
REVOKE ALL ON ALL FROM [ROLE] rolename

Example

gsec -del guest

isql employee

fbs bin # ./isql employee

Database: employee

SQL> REVOKE ALL ON ALL FROM USER guest;
SqQL>

User Privileges for Metadata Changes
Dmitry Yemanov; Roman Simakov

In Firebird 3, the system tables are read-only. This SQL syntax provides the means to assign
metadata write privileges to specified users or roles for specified objects. See Tracker item CORE-
735.

Some people have been applying the nickname “DDL privileges” to this feature.

o Don’t confuse it with “DDL triggers”! A more useful nickname would be “Metadata
privileges”.

Syntax Patterns

Granting metadata privileges:

88

http://tracker.firebirdsql.org/browse/CORE-735
http://tracker.firebirdsql.org/browse/CORE-735

Chapter 7. Security

GRANT CREATE <object-type>

TO [USER | ROLE] { user-name | role-name } [WITH GRANT OPTION];
GRANT ALTER ANY <object-type>

TO [USER | ROLE] { user-name | role-name } [WITH GRANT OPTION];
GRANT DROP ANY <object-type>

TO [USER | ROLE] { user-name | role-name } [WITH GRANT OPTION];

Revoking metadata privileges:

REVOKE [GRANT OPTION FOR] CREATE <object-type>
FROM [USER | ROLE] { user-name | role-name };
REVOKE [GRANT OPTION FOR] ALTER ANY <object-type>
FROM [USER | ROLE] { user-name | role-name };
REVOKE [GRANT OPTION FOR] DROP ANY <object-type>
FROM [USER | ROLE] { user-name | role-name };

Special form for database access:

GRANT CREATE DATABASE TO [USER | ROLE] { user-name | role-name };
GRANT ALTER DATABASE

TO [USER | ROLE] { user-name | role-name } [WITH GRANT OPTION];
GRANT DROP DATABASE

TO [USER | ROLE] { user-name | role-name } [WITH GRANT OPTION];

REVOKE CREATE DATABASE FROM [USER | ROLE] { user-name | role-name };
REVOKE [GRANT OPTION FOR] ALTER DATABASE

FROM [USER | ROLE] { user-name | role-name };
REVOKE [GRANT OPTION FOR] DROP DATABASE

FROM [USER | ROLE] { user-name | role-name };

Notes on Usage

* <object-type> can be any of the following:

CHARACTER SET COLLATION DOMAIN EXCEPTION
FILTER FUNCTION GENERATOR PACKAGE
PROCEDURE ROLE SEQUENCE TABLE
VIEW
o The metadata for triggers and indices are accessed through the privileges for
the table that owns them.

« If the ANY option is used, the user will be able to perform any operation on any object

« If the ANY option is absent, the user will be able to perform operations on the object only if he
owns it

89

Chapter 7. Security

* If the ANY option was acquired via a GRANT operation then, to revoke it, the REVOKE operation must
accord with that GRANT operation

Example

GRANT CREATE TABLE TO Joe;
GRANT ALTER ANY TABLE TO Joe;
REVOKE CREATE TABLE FROM Joe;

GRANT EXECUTE Privileges for UDFs
Dmitry Yemanov
CORE-2554: EXECUTE permission is now supported for UDFs (both legacy and PSQL based ones).

Syntax

GRANT EXECUTE ON FUNCTION name TO <grantee list>
[<grant option> <granted by clause>]

REVOKE EXECUTE ON FUNCTION name FROM <grantee list>
[<granted by clause>]

o The initial EXECUTE permission is granted to the function owner (user who created
or declared the function).

Improvement for Recursive Stored Procedures

Alex Peshkov

A recursive stored procedure no longer requires the EXECUTE privilege to call itself. See Tracker item
CORE-3242.

Privileges to Protect Other Metadata Objects

New SQL:2008 compliant USAGE permission is introduced to protect metadata objects other than
tables, views, procedures and functions.

90

http://tracker.firebirdsql.org/browse/CORE-2554
http://tracker.firebirdsql.org/browse/CORE-3242

Chapter 7. Security

Syntax

GRANT USAGE ON <object type> name TO <grantee list>
[<grant option> <granted by clause>]

REVOKE USAGE ON <object type> name FROM <grantee list>
[<granted by clause>]

<object type> ::=
{DOMAIN | EXCEPTION | GENERATOR | SEQUENCE | CHARACTER SET | COLLATION}

The initial USAGE permission is granted to the object owner (user who created the
object).

In Firebird 3.0.0, only USAGE permissions for exceptions (CORE-2884) and

o generators/sequences (gen_id, next value for: CORE-2553) are enforced. Granting
privileges for character sets, collations and domains is disabled, making these
object types unavailable for any type of GRANT or REVOKE commands. Access to them
is not subject to any form of enforcement, although this could change in future
releases if it is deemed appropriate.

Pseudo-Tables with List of Users
CORE-2639.

To access lists of users and attributes, query the virtual tables SEC§USERS and SEC$USER_ATTRIBUTES.

o This feature depends highly on the user management plug-in. Take into an account
that some options are ignored when using the legacy user management plug-in.

The pseudo-tables are much like the MON$-family tables used for monitoring the server. The table is
created on demand when you run the statement

SELECT * FROM SEC$USERS
or
SELECT * FROM SEC$USER_ATTRIBUTES

The output lists the users (or their attributes) in the security database that is configured for the
current database and available for management to the current user. SEC§USERS includes a field
indicating whether a user has the RDB§ADMIN role in the security database.

91

http://tracker.firebirdsql.org/browse/CORE-2884
http://tracker.firebirdsql.org/browse/CORE-2553
http://tracker.firebirdsql.org/browse/CORE-2639

Chapter 7. Security

Restriction on DROP ROLE (v.3.0.1)

CORE-5248.

Prior to Firebird 3.0.1, any user could drop a role. This is a bug which has been fixed in sub-release
3.0.1. Now, only the user who created the role and one who has been granted the role WITH ADMIN

OPTION can drop it.

o To obtain the proper behavior in old databases, roles should be recreated!

92

http://tracker.firebirdsql.org/browse/CORE-5248

Chapter 8. Data Definition Language (DDL)

Chapter 8. Data Definition Language (DDL)

Quick Links

* BOOLEAN Data Type

* Identity Column Type

* Manage Nullability in Domains and Columns

* Modify Generators (Sequences)

¢ Alter the Default Character Set

* BLOB Expressions in Computed Columns

* “Linger” Database Closure for Superserver

* New option in DROP SHADOW to Preserve the Shadow File

* New SQL for Managing Users and Access Privileges

DDL Enhancements

The following enhancements have been added to the SQL data definition language lexicon:

New Data Types

A fully-fledged BOOLEAN type is introduced in this release, along with a surfaced emulation of the
SQL standard “identity” column.

BOOLEAN Data Type

Adriano dos Santos Fernandes

The SQL:2008 compliant BOOLEAN data type (8 bits) comprises the distinct truth values TRUE and
FALSE. Unless prohibited by a NOT NULL constraint, the BOOLEAN data type also supports the truth value
UNKNOWN as the null value. The specification does not make a distinction between the NULL value of
this data type and the truth value UNKNOWN that is the result of an SQL predicate, search condition, or
Boolean value expression: they may be used interchangeably to mean exactly the same thing.

As with many programming languages, the SQL BOOLEAN values can be tested with implicit truth
values. For example, field1 OR field2 and NOT field1 are valid expressions.

The IS Operator

Predicates can use the operator IS [NOT] for matching. For example, field1 IS FALSE, or field1 IS
NOT TRUE.

e Equivalence operators (“=”, “!=", “<>” and so on) are valid in all comparisons.

93

Chapter 8. Data Definition Language (DDL)

BOOLEAN Examples

94

Chapter 8. Data Definition Language (DDL)

CREATE TABLE TBOOL (ID INT, BVAL BOOLEAN);
COMMIT;

INSERT INTO TBOOL VALUES (1, TRUE);
INSERT INTO TBOOL VALUES (2, 2 = 4);
INSERT INTO TBOOL VALUES (3, NULL = 1);
COMMIT;

SELECT * FROM TBOOL
ID BVAL

T <true>
2 <false>
3 <null>

-- Test for TRUE value
SELECT * FROM TBOOL WHERE BVAL
ID BVAL

1T <true>

-- Test for FALSE value
SELECT * FROM TBOOL WHERE BVAL IS FALSE
ID BVAL

2 <false>

-- Test for UNKNOWN value
SELECT * FROM TBOOL WHERE BVAL IS UNKNOWN
ID BVAL

3 <null>

-- Boolean values in SELECT list
SELECT ID, BVAL, BVAL AND ID < 2
FROM TBOOL
1D BVAL

1 <true> <true>
2 <false> <false>
3 <null> <false>

-- PSQL Declaration with start value
DECLARE VARIABLE VAR1 BOOLEAN = TRUE;

-- Valid syntax, but as with a comparison
-- with NULL, will never return any record
SELECT * FROM TBOOL WHERE BVAL = UNKNOWN
SELECT * FROM TBOOL WHERE BVAL <> UNKNOWN

95

Chapter 8. Data Definition Language (DDL)
Use of Boolean against other data types

Although BOOLEAN is not inherently convertible to any other datatype, from version 3.0.1 the strings
"true' and 'false' (case-insensitive) will be implicitly cast to BOOLEAN in value expressions, e.g.

if (true > 'false') then ...

'false' is converted to BOOLEAN. An attempt to use the Boolean operators AND, NOT, OR and IS will fail.
NOT 'False', for example, is invalid.

A BOOLEAN can be explicitly converted to and from string with CAST. UNKNOWN is not available for any
form of casting.

Other Notes

o * Represented in the API with the FB_BOOLEAN type and FB_TRUE and FB_FALSE
constants.

* The value TRUE is greater than the value FALSE.

Keywords INSERTING, UPDATING and DELETING

To avoid ambiguities when used in Boolean expressions, the previously non-reserved keywords
INSERTING, UPDATING and DELETING, which return True or False when tested in PSQL, have been made
reserved words in all contexts. If you have used any of these words as identifiers for database
objects, columns, variables or parameters, it will be necessary to redefine them, either with new
names or by enclosing these identifiers in double quotes.

Identity Column Type

Adriano dos Santos Fernandes

An identity column is a column associated with an internal sequence generator. Its value is set
automatically when the column is omitted in an INSERT statement.

Syntax

<column definition> ::=
name <type> GENERATED BY DEFAULT AS IDENTITY [(START WITH value)] <constraints>

When defining a column, the optional START WITH clause allows the generator to be initialised to a
value other than zero. See Tracker ticket CORE-4199.

<alter column definition> ::=
name RESTART [WITH value]

A column definition can be altered to modify the starting value of the generator. RESTART alone
resets the generator to zero; the optional WITH value clause allows the restarted generator to start at

96

http://tracker.firebirdsql.org/browse/CORE-4199

Chapter 8. Data Definition Language (DDL)

a value other than zero. See Tracker ticket CORE-4206.

Rules

* The data type of an identity column must be an exact number type with zero scale. Allowed
types are thus SMALLINT, INTEGER, BIGINT, NUMERIC(x,@) and DECIMAL(x,®).

* An identity column cannot have DEFAULT or COMPUTED value.

* An identity column cannot be altered to become a regular column. The reverse
is also true.

¢ Identity columns are implicitly NOT NULL (non-nullable).

o * Uniqueness is not enforced automatically. A UNIQUE or PRIMARY KEY constraint is
required to guarantee uniqueness.

* The use of other methods of generating key values for IDENTITY columns, e.g. by
trigger-generator code or by allowing users to change or add them, is
discouraged to avoid unexpected key violations.

Example

create table objects (
id integer generated by default as identity primary key,
name varchar(15)

)

insert into objects (name) values ('Table');
insert into objects (name) values ('Book');
insert into objects (id, name) values (10, 'Computer');

select * from objects;

ID NAME

1 Table
2 Book
10 Computer

Implementation Details

Two new columns have been inserted in RDB$RELATION_FIELDS to support identity columns:
RDBSGENERATOR_NAME and RDBSIDENTITY_TYPE.

» RDB$GENERATOR_NAME stores the automatically created generator for the column. In RDB$GENERATORS,
the value of RDB§SYSTEM_FLAG of that generator will be 6.

¢ Currently, ROB§IDENTITY_TYPE will currently always store the value 1 (for BY DEFAULT) for identity
columns and NULL for non-identity columns. In the future this column will store the value 0, too
(for ALWAYS) when Firebird implements support for this type of identity column.

97

http://tracker.firebirdsql.org/browse/CORE-4206

Chapter 8. Data Definition Language (DDL)
Manage Nullability in Domains and Columns
Adriano dos Santos Fernandes
ALTER syntax is now available to change the nullability of a table column or a domain

Syntax
ALTER TABLE table-name ALTER field-name { DROP | SET } [NOT] NULL

ALTER DOMAIN domain-name { DROP | SET } [NOT] NULL

The success of a change in a table column from NULL to NOT NULL is subject to a full
data validation on the table, so ensure that the column has no nulls before
attempting the change.

o A change in a domain subjects all the tables using the domain to validation.

An explicit NOT NULL on a column that depends on a domain prevails over the
domain. In this situation, the changing of the domain to make it nullable does not
propagate to the column.

Modify Generators (Sequences)
Adriano dos Santos Fernandes; Dmitry Yemanov

More statement options have been added for modifying generators (sequences). Where previously
in SQL the only option was ALTER SEQUENCE <sequence name> RESTART WITH <value>, now a full
lexicon is provided and GENERATOR and SEQUENCE are synonyms for the full range of commands.

RESTART can now be used on its own to restart the sequence at its previous start or restart value. A
new column RDB$INITIAL_VALUE is added to the system table RDB§GENERATORS to store that value.

A generator (sequence) can also be [re]created or altered to include an optional “step” clause to
make the generator increment the series by two or more steps instead of the default 1. The clause is
implemented as INCREMENT BY number and is stored in RDB§GENERATORS in RDBSGENERATOR_INCREMENT.

Syntax

{ CREATE | RECREATE } { SEQUENCE | GENERATOR } sequence-name [START WITH value]
[INCREMENT BY number]

CREATE OR ALTER { SEQUENCE | GENERATOR } sequence-name { RESTART | START WITH value }
[INCREMENT BY number]

ALTER { SEQUENCE | GENERATOR } <sequence name> RESTART [WITH value]
[INCREMENT BY number]

98

Chapter 8. Data Definition Language (DDL)

Function GEN_ID()

o The legacy function GEN_ID(generator_name, step_value)) still works to set a one-
time step value in its second argument. If it is wused, the stored
RDB$GENERATOR_INCREMENT value is overridden.

Alter the Default Character Set

Adriano dos Santos Fernandes

ALTER DATABASE

SET DEFAULT CHARACTER SET <new_charset>

The alteration does not change any existing data. The new default character set is used only in
subsequent DDL commands and will assume the default collation of the new character set.

BLOB Expressions in Computed Columns
Adriano dos Santos Fernandes
A substring from a BLOB column can now be used to define a computed column.

Example

ALTER TABLE ATABLE
ADD ABLOB
COMPUTED BY (SUBSTRING(BLOB_FIELD FROM 1 FOR 20))

“Linger” Database Closure for Superserver

Alex Peshkov

Sometimes it is desirable to have the Superserver engine keep the database open for a period after
the last attachment is closed, i.e. to have it “linger” a while. It can help to improve performance at
low cost, under conditions where the database is opened and closed frequently, by keeping
resources “warm” for next time it is reopened.

Firebird 3.0 introduces an enhancement to ALTER DATABASE to manage this optional LINGER capability
for databases running under Superserver.

Syntax
ALTER DATABASE SET LINGER TO seconds;
ALTER DATABASE DROP LINGER;

Usage

99

Chapter 8. Data Definition Language (DDL)

To set linger for the database do:
ALTER DATABASE SET LINGER TO 30; -- sets linger interval to 30 seconds

Either of the following forms will clear the linger setting and return the database to the normal
condition (no linger):

ALTER DATABASE DROP LINGER;
ALTER DATABASE SET LINGER TO 0;

Dropping LINGER is not an ideal solution for the occasional need to turn it off for
some once-only condition where the server needs a forced shutdown. The gfix
utility now has the -NolLinger switch, which will close the specified database
immediately after the last attachment is gone, regardless of the LINGER setting in
the database. The LINGER setting is retained and works normally the next time.

o The same one-off override is also available through the Services API, using the tag

isc_spb_prp_nolinger, e.g. (in one line):

fbsvemgr host:service_mgr user sysdba password xxx
action_properties dbname employee prp_nolinger

See also Tracker ticket CORE-4263 for some discussion of the development of this feature.

Option to Preserve Shadow File
Alex Peshkov

The DROP SHADOW command has a new option to preserve the shadow file in the filesystem:

DROP SHADOW shadow_num
[{DELETE | PRESERVE} FILE]

See Tracker ticket CORE-4955.

New SQL for Managing Users and Access Privileges

A number of new features and enhancements have been added to the DDL lexicon for managing
users and their access to objects in databases. They are described in detail in Chapter 7, Security.

SQL-driven User Management

The SQL set of DDL commands for managing user accounts has been enhanced in Firebird 3, thus
improving the capability to manage (add, modify or delete) users in a security database from a
regular database attachment.

100

http://tracker.firebirdsql.org/browse/CORE-4263
http://tracker.firebirdsql.org/browse/CORE-4955

Chapter 8. Data Definition Language (DDL)

gsec is deprecated!

o The command-line and shell utility gsec is deprecated from this release forward. It
will continue to work with security3.fdb, but it will not work with alternative
security databases.

SET ROLE and SET TRUSTED ROLE

The SQL:2008-compliant operator SET ROLE allows the CURRENT_ROLE context variable to be set to one
that has been granted to the CURRENT_USER or to a user assigned to the database attachment as
trusted (SET TRUSTED ROLE).

GRANTED BY Clause for Privileges

Previously, the grantor or revoker of SQL privileges was always the current user. The GRANTED BY
clause makes it so that a different grantor or revoker can be specified in GRANT and REVOKE
commands.

REVOKE ALL ON ALL

When a user is removed from the security database or another authentication source, this new
command is useful for revoking its access to all objects in the database.

GRANT/REVOKE Metadata Privileges

In Firebird 3, the system tables are read-only. This SQL syntax provides the means to assign
metadata write privileges to specified users or roles for specified objects.

EXECUTE Privileges for UDFs

EXECUTE permission is now supported for UDFs (both legacy and PSQL based ones).

GRANT/REVOKE USAGE

New SQL:2008-compliant USAGE permission is introduced to protect metadata objects other than
tables, views, procedures and functions.

101

Chapter 9. Data Manipulation Language (DML)

Chapter 9. Data Manipulation Language
(DML)

In this chapter are the additions and improvements that have been added to the SQL data
manipulation language subset in Firebird 3.0.

Quick Links

* Supplemental SQL:2008 Features for MERGE

* Window (Analytical) Functions

* Advanced Plan Output

* SUBSTRING with Regular Expressions

* Inverse Hyperbolic Trigonometric Functions

« Statistical Functions

* Enhancements to DATEADD() Internal Function

* TRIM() BLOB Arguments Lose 32 KB limit

* Alternatives for Embedding Quotes in String Literals
* SQL:2008-Compliant OFFSET and FETCH Clauses

* Prohibit Edgy Mixing of Implicit/Explicit Joins

» Support for Left-side Parameters in WHERE Clause
* RETURNING Clause Value Can be Aliased

* RETURNING Clause from Positioned Updates and Deletes
* Cursor Stability

* An Improvement for Global Temporary Tables

* An Improvement for DML Strings

¢ COUNT(Now Returns BIGINT

» SIMILAR TO Performance Improvement

* OR’ed Parameter in WHERE Clause

A Little Dialect 1 Accommodation

* Embedded SQL (ESQL) Enhancements

Supplemental SQL:2008 Features for MERGE

Adriano dos Santos Fernandes
In summary, support for MERGE was supplemented with the introduction of these features:

¢ Addition of the DELETE extension (CORE-2005)

102

http://tracker.firebirdsql.org/browse/CORE-2005

Chapter 9. Data Manipulation Language (DML)

* Enabling the use of multiple WHEN MATCHED | WHEN NOT MATCHED clauses (CORE-3639) and ability to
apply conditions to WHEN MATCHED | WHEN NOT MATCHED

* Addition of the RETURNING -+ INTO --- clause (CORE-3020)

The purpose of MERGE is to read data from the source and INSERT or UPDATE in the target table
according to a condition. It is available in DSQL and PSQL.

Syntax

<merge statement> ::=
MERGE
INTO table-or-view [[AS] correlation-name]
USING <table or view or derived-table> [[AS] correlation-name]
ON <condition>
<merge when>. ..
<returning clause>

<merge when> ::=
<merge when matched> |
<merge when not matched>

<merge when matched> ::=
WHEN MATCHED [AND <condition>] THEN
{ UPDATE SET <assignment list> | DELETE }

<merge when not matched> ::=
WHEN NOT MATCHED [AND <condition>] THEN
INSERT [<left paren> <column list> <right paren>]
VALUES <left paren> <value list> <right paren>

Rules

At least one of <merge when matched> or <merge when not matched> should be specified.
Example

MERGE INTO customers c

USING
(SELECT * FROM customers_delta WHERE id > 10) cd
ON (c.id = cd.id)

WHEN MATCHED THEN
UPDATE SET name = cd.name

WHEN NOT MATCHED THEN
INSERT (id, name)
VALUES (cd.id, cd.name)

103

http://tracker.firebirdsql.org/browse/CORE-3639
http://tracker.firebirdsql.org/browse/CORE-3020

Chapter 9. Data Manipulation Language (DML)

A right join is made between the INTO (left-side) and USING tables using the
condition. UPDATE is called when a record exists in the left table (INT0), otherwise
INSERT is called.

As soon as it is determined whether or not the source matches a record in the

o target, the set formed from the corresponding (WHEN MATCHED / WHEN NOT MATCHED)
clauses is evaluated in the order specified, to check their optional conditions. The
first clause whose condition evaluates to true is the one which will be executed,
and the subsequent ones will be ignored.

If no record is returned in the join, INSERT is not called.

Window (Analytical) Functions
Adriano dos Santos Fernandes

According to the SQL specification, window functions (also known as analytical functions) are a
kind of aggregation, but one that does not “filter” the result set of a query. The rows of aggregated
data are mixed with the query result set.

The window functions are used with the OVER clause. They may appear only in the SELECT list or the
ORDER BY clause of a query.

Besides the OVER clause, Firebird window functions may be partitioned and ordered.

Syntax

<window function> ::= <window function name> ([<expr> [, <expr> ...]]) OVER (
[PARTITION BY <expr> [, <expr> ...]]
[ORDER BY <expr>
[<direction>]
[<nulls placement>]
[, <expr> [<direction>] [<nulls placement>] ...]

)
<direction> ::= {ASC | DESC}

<nulls placement> ::= NULLS {FIRST | LAST}

Aggregate Functions Used as Window Functions
All aggregate functions may be used as window functions, adding the OVER clause.

Imagine a table EMPLOYEE with columns ID, NAME and SALARY, and the need to show each employee
with his respective salary and the percentage of his salary over the payroll.

A normal query could achieve this, as follows:

104

Chapter 9. Data Manipulation Language (DML)

select
id,
department,
salary,
salary / (select sum(salary) from employee) portion
from employee
order by 1id;

Results

id department salary portion

1T R&D 10.00 0.2040
2 SALES 12.00 0.2448
3 SALES 8.00 0.1632
4 R&D 9.00 0.1836
5 R&D 10.00 0.2040

The query is repetitive and lengthy to run, especially if EMPLOYEE happens to be a complex view.
The same query could be specified in a much faster and more elegant way using a window

function:

select
id,
department,
salary,
salary / sum(salary) OVER () portion
from employee
order by id;

Here, sum(salary) over () is computed with the sum of all SALARY from the query (the EMPLOYEE
table).

Partitioning

Like aggregate functions, that may operate alone or in relation to a group, window functions may
also operate on a group, which is called a “partition”.

Syntax

<window function>(...) OVER (PARTITION BY <expr> [, <expr> ...])

Aggregation over a group could produce more than one row, so the result set generated by a
partition is joined with the main query using the same expression list as the partition.

Continuing the EMPLOYEE example, instead of getting the portion of each employee’s salary over the

105

Chapter 9. Data Manipulation Language (DML)

all-employees total, we would like to get the portion based on just the employees in the same
department:

select
id,
department,
salary,
salary / sum(salary) OVER (PARTITION BY department) portion
from employee
order by id;

Results

id department salary portion

1T R&D 10.00 0.3448

2 SALES 12.00 0.6000

3 SALES 8.00 0.4000

4 R&D 9.00 0.3103

5 R&D 10.00 0.3448
Ordering

The ORDER BY sub-clause can be used with or without partitions and, with the standard aggregate
functions, make them return the partial aggregations as the records are being processed.

Example

select
id,
salary,
sum(salary) over (order by salary) cumul_salary
from employee
order by salary;

Results

3 8.00 8.00
4 9.00 17.00
1 10.00 37.00
5 10.00 37.00
2 12.00 49.00

Then cumul_salary returns the partial/accumulated (or running) aggregation (of the SUM function). It
may appear strange that 37.00 is repeated for the ids 1 and 5, but that is how it should work. The
ORDER BY keys are grouped together and the aggregation is computed once (but summing the two

106

Chapter 9. Data Manipulation Language (DML)

10.00). To avoid this, you can add the ID field to the end of the ORDER BY clause.

It’s possible to use multiple windows with different orders, and ORDER BY parts like ASC/DESC and
NULLS FIRST/LAST.

With a partition, ORDER BY works the same way, but at each partition boundary the aggregation is
reset.

All aggregation functions, other than LIST(), are usable with ORDER BY.

Exclusive window functions

Beyond aggregate functions are the exclusive window functions, currently divided into ranking and
navigational categories. Both sets can be used with or without partition and ordering, although the
usage does not make much sense without ordering.

Ranking Functions

The ranking functions compute the ordinal rank of a row within the window partition. In this
category are the functions DENSE_RANK, RANK and ROW_NUMBER.

Syntax

<ranking window function> ::=
DENSE_RANK() |
RANK() |
ROW_NUMBER()

The ranking functions can be used to create different type of incremental counters. Consider SUM(1)
OVER (ORDER BY SALARY) as an example of what they can do, each of them in a different way.
Following is an example query, also comparing with the SUM behavior.

select

id,
salary,
dense_rank() over (order by salary),
rank() over (order by salary),
row_number () over (order by salary),
sum(1) over (order by salary)

from employee

order by salary;

107

Chapter 9. Data Manipulation Language (DML)

Results

3 8.00 1 1 1 1
4 9.00 2 2 2 2
1 10.00 3 3 3 4
5 10.00 3 3 4 4
2 12.00 4 5 5 5

The difference between DENSE_RANK and RANK is that there is a gap related to duplicate rows (relative
to the window ordering) only in RANK. DENSE_RANK continues assigning sequential numbers after the
duplicate salary. On the other hand, ROW_NUMBER always assigns sequential numbers, even when
there are duplicate values.

Navigational Functions

The navigational functions get the simple (non-aggregated) value of an expression from another
row of the query, within the same partition.

Syntax

<navigational window function> ::=
FIRST_VALUE(<expr>) |
LAST_VALUE (<expr>) |
NTH_VALUE (<expr>, <offset>) [FROM FIRST | FROM LAST] |
LAG(<expr> [[, <offset> [, <default>]]) |
LEAD(<expr> [[, <offset> [, <default>]])

Important to Note
FIRST_VALUE, LAST_VALUE and NTH_VALUE also operate on a window frame. Currently,

o Firebird always frames from the first to the current row of the partition, not to the
last. This is likely to produce strange results for NTH_VALUE and especially
LAST_VALUE.
Example
select
id,
salary,

first_value(salary) over (order by salary),
last_value(salary) over (order by salary),
nth_value(salary, 2) over (order by salary),
lag(salary) over (order by salary),
lead(salary) over (order by salary)

from employee

order by salary;

108

Chapter 9. Data Manipulation Language (DML)

Results
id salary first_value 1last_value nth_value lag lead
3 8.00 8.00 8.00 <null> <null> 9.00
4 9.00 8.00 9.00 9.00 8.00 10.00
1 10.00 8.00 10.00 9.00 9.00 10.00
5 10.00 8.00 10.00 0.00 10.00 12.00
2 12.00 8.00 12.00 0.00 10.00 <null>

FIRST_VALUE and LAST_VALUE get, respectively, the first and last value of the ordered partition.

NTH_VALUE gets the n-th value, starting from the first (default) or the last record, from the ordered
partition. An offset of 1 from first would be equivalent to FIRST_VALUE; an offset of 1 from last is
equivalent to LAST_VALUE.

LAG looks for a preceding row, and LEAD for a following row. LAG and LEAD get their values within a
distance respective to the current row and the offset (which defaults to 1) passed.

In a case where the offset points outside the partition, the default parameter (which defaults to
NULL) is returned.

Advanced Plan Output

Dmitry Yemanov

PLAN output can now be output in a more structured and comprehensible form, e.g.

SELECT statement
-> First [10]
-> Sort [SUM, O_ORDERDATE]
-> Aggregate
-> Sort [L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY]
-> Inner Loop Join
-> Filter
-> Table <«ORDERS> Access By ID
-> Bitmap
-> Index <«ORDERS_ORDERDATE>> Range Scan
-> Filter
-> Table «CUSTOMER> Access By ID
-> Bitmap
-> Index <« CUSTOMER_PK>> Unique Scan
-> Filter
-> Table «LINEITEM> Access By ID
-> Bitmap
-> Index «<LINEITEM_PK> Unique Scan

109

Chapter 9. Data Manipulation Language (DML)

Advanced PLAN Output in isql
New syntax SET EXPLAIN [ON | OFF] has been added to the isql utility to surface this option. For
details, refer to SET EXPLAIN Extensions for Viewing Detailed Plans in the Utilities chapter.

Internal Functions

Additions and enhancements to the internal functions set are:

SUBSTRING with Regular Expressions
Adriano dos Santos Fernandes
A substring search can now use a regular expression.

Search Pattern

SUBSTRING(<string> SIMILAR <pattern> ESCAPE <char>)

Discussion: Tracker CORE-2006

For more information about the use of SIMILAR expressions, refer to README.similar_to.txt in the
/doc/ subdirectory of your Firebird installation.

The regex used is the SQL one — the same one that is used for Firebird’s SIMILAR

O T0 searches. A guide is available in the Common Language Elements chapter of the

- Firebird 2.5 Language Reference, and in the DML chapter of the version 2.5 release
notes available at the Firebird web site.

Inverse Hyperbolic Trigonometric Functions
Claudio Valderrama C.
The six inverse hyperbolic trigonometric functions have been implemented internally. They are:

ACOSH

Returns the hyperbolic arc cosine of a number (expressed in radians). Format: ACOSH(<number>)

ASINH

Returns the hyperbolic arc sine of a number (expressed in radians). Format: ASINH(<number>)

ATANH

Returns the hyperbolic arc tangent of a number (expressed in radians). Format: ATANH(<number>

)

COSH

Returns the hyperbolic cosine of an angle (expressed in radians). Format: COSH(<number>)

110

http://tracker.firebirdsql.org/browse/CORE-2006
https://www.firebirdsql.org/file/documentation/html/en/refdocs/fblangref25/firebird-25-language-reference.html#fblangref25-commons-predsiimilarto
https://www.firebirdsql.org/file/documentation/release_notes/html/en/2_5/rnfb25-dml.html#rnfb25-dml-regex

Chapter 9. Data Manipulation Language (DML)

SINH

Returns the hyperbolic sine of an angle (expressed in radians). Format: SINH(<number>)
TANH

Returns the hyperbolic tangent of an angle (expressed in radians). Format: TANH(<number>)
Statistical Functions
Hajime Nakagami; Adriano dos Santos Fernandes

A suite of SQL-standard-compliant statistical functions has been implemented.

Aggregate Statistical Functions

Functions comprise Sample Variance, Population Variance, Sample Standard Deviation, Population
Standard Deviation, Sample Population, Population Covariance and Coefficient of Correlation. See
Tracker ticket CORE-4717.

Syntax

<single param statistical function> ::= <single param statistical function
name>(<expr>)

<single param statistical function name> := { VAR_POP | VAR_SAMP | STDDEV_POP |
STDDEV_SAMP }

<dual param statistical function> ::= <dual param statistical function name>(<expri1>,

<expr>>)
<dual param statistical function name> := { COVAR_POP | COVAR_SAMP | CORR }

Semantics

e NULL is returned from VAR_SAMP, STDDEV_SAMP or COVAR_SAMP if the result count is 0

e -

e NULL is returned from VAR_POP, STDDEV_POP, COVAR_POP or CORR if the result count is
0

Example

SELECT STDDEV_SAMP(salary) FROM employees;

Table 3. SD/Variance Function Descriptions

Function Format Description
VAR_SAMP VAR_SAMP (' <expr>) Returns the Sample Variance, equivalent to
(SUM(<expr> A 2) - SUM(<expr>) A 2 / COUNT(<expr>)) / (COUNT(<expr>) - 1)
VAR_POP VAR_POP(<expr>) Returns the the Population Variance, equivalent
to

111

http://tracker.firebirdsql.org/browse/CORE-4717

Chapter 9. Data Manipulation Language (DML)

Function Format Description
(SUM(<expr> A 2) - SUM(<expr>) A 2 / COUNT(<expr>)) / COUNT(<expr>)

STDDEV_SAMP STDDEV_SAMP(' <expr>) Returns the Sample Standard Deviation,
equivalent to

SQRT(VAR_SAMP(<expr>))

STDDEV_POP STDDEV_POP(<expr>) Returns the Population Standard Deviation,
equivalent to

SQRT(VAR_POP(<expr>))

COVAR_SAMP COVAR_SAMP(<expr1>, <expr2>) Returns the Sample Population, equivalent to

(SUM(<expr1> * <expr2>) - SUM(<expr1>) * SUM(<expr2>) / COUNT(*)) / (COUNT(*) - 1)

COVAR_POP COVAR_POP(<expr1>, <expr2>) Returns the Population Covariance, equivalent
to

(SUM(<expr1> * <expr2>) - SUM(<expr1>) * SUM(<expr2>) / COUNT(*)) / COUNT(*)

CORR CORR(<expr1>, <expr2>) Returns the Coefficient of Correlation,
equivalent to

COVAR_POP(<expr1>, <expr2>) / (STDDEV_POP(<expr2>) * STDDEV_POP(<expri1>))

Linear Regression Functions

The suite of REGR_* functions analyses the relationships between two sets of numeric data,
considering only sets that are not NULL in either expression. See Tracker ticket CORE-4722.

Syntax
<regr function> ::= <function name>(<expr1>, <expr2>)

<function name> := { REGR_AVGX | REGR_AVGY | REGR_COUNT | REGR_INTERCEPT |
REGR_R2 | REGR_SLOPE | REGR_SXX | REGR_SXY | REGR_SYY }

Formulae

The formulae use the following variables:

Y: <expr1> (<expr1> IS NOT NULL AND <expr2> IS NOT NULL)
X: <expr2> (<expr1> IS NOT NULL AND <expr2> IS NOT NULL)
N: COUNT of recordset unless <expr1> IS NULL OR <expr2> IS NULL

Y and X are DOUBLE PRECISION. N is SMALLINT, INTEGER or BIGINT.

o All functions eliminate expression pairs where either expression in the pair is
NULL. If no rows remain, the functions (except REGR_COUNT()) return NULL.

Table 4. Linear Regression Function Descriptions

112

http://tracker.firebirdsql.org/browse/CORE-4722

Chapter 9. Data Manipulation Language (DML)

Function Format Description

REGR_AVGX REGR_AVGX(Y, X) Returns the average of the independent
expression (Y) in the expression pair. The return
value is of type DOUBLE PRECISION.

REGR_AVGX(Y, X) = SUM(X) / N

REGR_AVGY REGR_AVGY (Y, X) Returns the average of the dependent
expression (X) in the expression pair. The return
value is of type DOUBLE PRECISION.

REGR_AVGY(Y, X) = SUM(Y) / N

REGR_COUNT REGR_COUNT(Y, X) Returns the number of expression pairs (Y and
X). The return value is of type SMALLINT, INTEGER
or BIGINT. If no rows remain after elimination of
pairs where either expression is NULL, the
function returns O.

REGR_COUNT(Y, X) =N

REGR_INTERCEPT REGR_INTERCEPT(Y, X) Returns the y-intercept of the regression line
determined by a set of expression pairs (Y and X).

REGR_INTERCEPT(Y, X) = REGR_AVGY(Y, X) - REGR_SLOPE(Y, X) * REGR_AVGX(Y, X)

REGR_R2 REGR_R2(Y, X) Returns the square of the correlation coefficient
of a set of expression pairs (Y and X).

REGR_R2(Y, X) = POWER(CORR(Y, X),2)

REGR_SLOPE REGR_SLOPE(Y, X) Returns the slope of the regression line,
determined by a set of expression pairs (Y and X).

REGR_SLOPE(Y, X) = COVAR_POP(Y, X) / VAR_POP(X)

REGR_SXX REGR_SXX(Y, X) Returns the sum of squares of the independent
expression (Y) in an expression pair (Y and X).

REGR_SXX(Y, X) = N * VAR_POP(X)

REGR_SXY REGR_SXY(Y, X) Returns the sum of products of the independent
expression multiplied by the dependent
expression in an expression pair (Y and X).

REGR_SXY(Y, X) = N * COVAR_POP(Y, X)

REGR_SYY REGR_SYY(Y, X) Returns the sum of squares of the dependent
expression in an expression pair (Y and X).

REGR_SYY(Y, X) = N * VAR_POP(Y)

TRIM() BLOB Arguments Lose 32 KB limit
Adriano dos Santos Fernandes

In prior versions, TRIM(substring FROM string) allowed BLOBs for both arguments, but the first
argument had to be smaller than 32 KB. Now both arguments can take BLOBs of up to 4 GB.

113

Chapter 9. Data Manipulation Language (DML)
String Literal Limit Adjustments
Adriano dos Santos Fernandes

The internal length of a string can, at some levels, be almost 64 KB. Tests demonstrated that it is safe
to accept a string literal of up to that size for writing to a text BLOB. Accordingly,

1. The (32KB - 3) “safety limit” on literal string length for writing to text BLOBs has been raised to
65,533 bytes (64KB - 3);

2. A limit, in characters, is calculated in run-time for strings that are in multi-byte character sets,
to avoid overrunning the bytes limit. For example, for a UTF8 string (max. 4 bytes/character) the
run-time limit is likely to be about (floor (65533/4)) = 16383 characters.

See Tracker ticket CORE-4881.

Enhancements to DATEADD() Internal Function
Adriano dos Santos Fernandes
For the internal function DATEADD()

* The function now supports a fractional value for MILLISECOND. See Tracker item CORE-4457.

* the data type of input <amount> arguments has changed from INTEGER to BIGINT. See Tracker item
CORE-4310.

DML Improvements

A collection of useful DML improvements is released with Firebird 3.

Alternatives for Embedding Quotes in String Literals
Adriano dos Santos Fernandes

It is now possible to use a character, or character pair, other than the doubled (escaped)
apostrophe, to embed a quoted string inside another string. The keyword q or Q preceding a quoted
string informs the parser that certain left-right pairs or pairs of identical characters within the
string are the delimiters of the embedded string literal.

Syntax
<alternate string literal> ::=

{ q | Q} <quote> <alternate start char> [{ <char> }...] <alternate end char>
<quote>

114

http://tracker.firebirdsql.org/browse/CORE-4881
http://tracker.firebirdsql.org/browse/CORE-4457
http://tracker.firebirdsql.org/browse/CORE-4310

Chapter 9. Data Manipulation Language (DML)

Rules

When <alternate start char>is ‘C, ‘", ‘[’ or ‘<, <alternate end char> is paired up
with its respective “partner”, viz.)’, ‘}, ‘]’ and ’. In other cases, <alternate end
o char> is the same as <alternate start char>.

Inside the string, i.e. <char> items, single (not escaped) quotes can be used. Each
quote will be part of the result string.

Examples
select q'{abc{def}ghi}' from rdb§database; -- result: abc{def}ghi
select q'!That's a string!' from rdb$database; -- result: That's a string

SQL:2008-Compliant OFFSET and FETCH Clauses

Mark Rotteveel

New SQL:2008 compliant OFFSET and FETCH clauses provide a standard equivalent for FIRST and SKIP,
and an alternative for ROWS---T0, when fetching sets from ordered output.

» The OFFSET clause specifies the number of rows to skip

» The FETCH clause specifies the number of rows to fetch.

As with SKIP and FIRST, OFFSET and FETCH clauses can be applied independently, in both top-level and
nested query expressions. They are available in PSQL and DSQL.

Syntax
SELECT ... [ORDER BY <expr_list>]

[OFFSET <simple_value_expr> { ROW | ROWS }]
[FETCH { FIRST | NEXT } [<simple_value_expr>] { ROW | ROWS } ONLY]

<simple_value_expr> is a (numeric) literal, a DSQL parameter (‘?’) or a PSQL named parameter
(“:namedparameter”) that resolves to an integer data type.

115

Chapter 9. Data Manipulation Language (DML)

Examples

-- 1.
SELECT * FROM T1 ORDER BY COL1
OFFSET 10 ROWS;
-- 2:
SELECT * FROM T1 ORDER BY COL1
FETCH FIRST 10 ROWS ONLY;
-- 3
SELECT * FROM (
SELECT * FROM T1 ORDER BY COL1 DESC
OFFSET 1 ROW
FETCH NEXT 10 ROWS ONLY
) a
ORDER BY a.COL1
FETCH FIRST ROW ONLY;

1. The FIRST/SKIP and ROWS clauses are non-standard alternatives.

2. The OFFSET and/or FETCH clauses cannot be mixed with clauses from the FIRST
/SKIP or ROWS alternatives in the same query expression.

3. Expressions and column references are not allowed within either the OFFSET or
o the FETCH clause.

4. Unlike the ROWS clause, OFFSET and FETCH are available only in SELECT statements.
5. The “percentage FETCH” defined in the SQL standard is not supported.
6. “FETCH --- WITH TIES” defined in the SQL standard is not supported.

Prohibit Edgy Mixing of Implicit/Explicit Joins
Dmitry Yemanov

While mixing of implicit and explict join syntax is not recommended at all, the parser would allows
them, nevertheless. Certain “mixes” actually cause the optimizer to produce unexpected results,
including “No record for fetch” errors. The same edgy styles are prohibited by other SQL engines
and now they are prohibited in Firebird.

To visit some discussion on the subject, see the Tracker ticket CORE-2812.

Support for Left-side Parameters in WHERE Clause

Adriano dos Santos Fernandes

The following style of subquery, with the parameter in the left side of a WHERE:--IN (SELECT:--)
condition, would fail with the error “The data type of the parameter is unknown”.

This style is now accepted. For example:

116

http://tracker.firebirdsql.org/browse/CORE-2812

Chapter 9. Data Manipulation Language (DML)

SELECT <columns> FROM table 1 t1
WHERE <conditions on table_ 1>
AND (? IN (SELECT some_col FROM table_2 t2 WHERE t1.id = t2.ref_id))

Better SQL coding practice would be to use EXISTS in these cases; however,
o developers were stumbling over this problem when using generated SQL from
Hibernate, which used this undesirable style.
Enhancements to the RETURNING Clause

Adriano dos Santos Fernandes

Two enhancements were added to the RETURNING clause:

RETURNING Clause Value Can be Aliased

When using the RETURNING clause to return a value to the client, the value can now be passed under
an alias.

Example Without and With Aliases

UPDATE T1 SET F2 = F2 * 10
RETURNING OLD.F2, NEW.F2; -- without aliases

UPDATE T1 SET F2 = F2 * 10
RETURNING OLD.F2 OLD_F2, NEW.F2 AS NEW_F2; -- with aliases

e The keyword AS is optional.

RETURNING Clause from Positioned Updates and Deletes

Support has been added for a RETURNING clause in positioned (WHERE CURRENT OF) UPDATE and DELETE
statements.

Example

UPDATE T1 SET F2 = F2 * 10 WHERE CURRENT OF C
RETURNING NEW.F2;

Cursor Stability
Vlad Khorsun

Until this release, Firebird suffered from an infamous bug whereby a data modification operation
could loop infinitely and, depending on the operation, delete all the rows in a table, continue
updating the same rows ad infinitum or insert rows until the host machine ran out of resources. All
DML statements were affected (INSERT, UPDATE, DELETE, MERGE). It occurred because the engine used

117

Chapter 9. Data Manipulation Language (DML)

an implicit cursor for the operations.

To ensure stability, rows to be inserted, updated or deleted had to be marked in some way in order
to avoid multiple visits. Another workaround was to force the query to have a SORT in its plan, in
order to materialize the cursor.

From Firebird 3, engine uses the Undo log to check whether a row was already inserted or modified
by the current cursor.

o This stabilisation does not work with SUSPEND loops in PSQL.

An Improvement for Global Temporary Tables

Vlad Khorsun

Global temporary tables (GTTs) are now writable even in read-only transactions. The effect is as
follows:

Read-only transaction in read-write database
Writable in both ON COMMIT PRESERVE ROWS and ON COMMIT DELETE ROWS

Read-only transaction in read-only database
Writable in ON COMMIT DELETE ROWS only

Also

* Rollback for GTT ON COMMIT DELETE ROWS is faster
* Rows do not need to be backed out on rollback

* Garbage collection in GTT is not delayed by active transactions of other connections

o The same refinements were also backported to Firebird 2.5.1.

An Improvement for DML Strings
Adriano dos Santos Fernandes

Strings in DML queries are now transformed or validated to avoid passing malformed strings to the
engine internals, for example, to the MON§STATEMENTS.MON$SQL_TEXT column.

The solution adopted depends on the character set of the attachment:

* NONE — non-ASCII characters are transformed to question marks

* Others— the string is checked for malformed characters

COUNT() Now Returns BIGINT

The COUNT() aggregate function now returns its result as BIGINT instead of INTEGER.

118

Chapter 9. Data Manipulation Language (DML)
Optimizations
Optimizations made for this release included:

SIMILAR TO

Adriano dos Santos Fernandes

The performance of SIMILAR TO was improved.

OR’ed Parameter in WHERE Clause

Dmitry Yemanov

Performance for (table.field = :param or :param = -1) in the WHERE clause was enhanced.

Better Choices for Navigation

Dmitry Yemanov

Previously, when an ORDER plan was in a SELECT structure, the optimizer would choose the first index
candidate that matched the ORDER BY or GROUP BY clause. This “first come” approach is not the best
when multiple index choices are available. The Firebird 3 engine surveys all of the available
choices and picks the most suitable index.

See Tracker ticket CORE-4285.

Plainer Execution Path for UNION Queries

Dmitry Yemanov

Previously, the execution path for UNION queries was hierarchical, often causing redundant reads.
This optimization replaces the hierarchical execution path with a plainer one that improves
performance.

See Tracker ticket CORE-4165.

Index Walk for Compound Index

Dmitry Yemanov

The optimizer now allows an index walk (ORDER plan) when a suitable compound index (A, B) is
available for a query condition of the style WHERE A = ? ORDER BY B.

See Tracker ticket CORE-1846.
Performance Improvement for SET STATISTICS INDEX
Vlad Khorsun

BTR_selectivity() would walk the whole leaf level of given index b-tree to calculate index
selectivity. Throughout the process, the only rescheduling would happen at a disk I/O operation.

119

http://tracker.firebirdsql.org/browse/CORE-4285
http://tracker.firebirdsql.org/browse/CORE-4165
http://tracker.firebirdsql.org/browse/CORE-1846

Chapter 9. Data Manipulation Language (DML)

The effect was to impose long waits for AST requests from concurrent attachments, such as page
lock requests, monitoring, cancellation, etc. An improvement in Firebird 3 seems to solve that
problem.

See Tracker ticket CORE-4215.

Dialect 1 Interface
Adriano dos Santos Fernandes
Selection of SQL_INT64, SQL_DATE and SQL_TIME in dialect 1 was enabled.

See Tracker CORE-3972

Embedded SQL (ESQL) Enhancements
Dmitry Yemanov
Two enhancements were included in the Embedded SQL subset in this release:

Support for UPDATE OR INSERT statement
See Tracker ticket CORE-4438

Support for the RETURNING clause
See Tracker ticket CORE-4437
Context Variables

Context variables added in version 3.0.4:

WIRE_COMPRESSED and WIRE_ENCRYPTED

Vlad Khorsun

Firebird 3.0.4: Context variables WIRE_COMPRESSED and WIRE_ENCRYPTED were added to the SYSTEM
namespace to report compression and encryption status, respectively, of the current connection:

WIRE_COMPRESSED

Compression status of the current connection. If the connection is compressed, returns TRUE; if it
is not compressed, returns FALSE. Returns NULL if the connection is embedded.

WIRE_ENCRYPTED

Encryption status of the current connection. If the connection is encrypted, returns TRUE; if it is
not encrypted, returns FALSE. Returns NULL if the connection is embedded.

LOCALTIME and LOCALTIMESTAMP

Adriano dos Santos Fernandes

Firebird 3.0.4: Context variables LOCALTIME and LOCALTIMESTAMP were added as synonyms for

120

http://tracker.firebirdsql.org/browse/CORE-4215
http://tracker.firebirdsql.org/browse/CORE-3972
http://tracker.firebirdsql.org/browse/CORE-4438
http://tracker.firebirdsql.org/browse/CORE-4437

Chapter 9. Data Manipulation Language (DML)

CURRENT_TIME and CURRENT_TIMESTAMP, respectively, in anticipation of CURRENT_TIME and
CURRENT_TIMESTAMP being redefined in Firebird 4 to represent the time and timestamp in UTC time, to
comply with the SQL standards.

LOCALTIME

Returns a timestamp carrying no date part. The time part registers the time of day, to
thousandths of a second, when execution of the current statement began. If the statement results
in multiple operations, the timestamp written to all records created or updated will be the same.

LOCALTIMESTAMP

Returns a timestamp registering the date and the time of day, to thousandths of a second, when
execution of the current statement began. If the statement results in multiple operations, all
records created or updated will have the same timestamp.

121

Chapter 10. Procedural SQL (PSQL)

Chapter 10. Procedural SQL (PSQL)

Advancements in procedural SQL (PSQL) include:

Quick Links

* PSQL Stored Functions

* PSQL Sub-routines

» Packages

* DDL triggers

* Exceptions with parameters

* CONTINUE in Looping Logic

* PSQL Cursor Stabilization

* PSQL Cursors as Variables

* SQLSTATE in Exception Handlers

* Some Size Limits Removed Using New API

PSQL Stored Functions

Dmitry Yemanov
It is now possible to write a scalar function in PSQL and call it just like an internal function.

Syntax for the DDL

{CREATE [OR ALTER] | ALTER | RECREATE} FUNCTION name

[(<paraml> [, ...1)]
RETURNS <type>

AS

BEGIN

END
(r) The CREATE statement is the declaration syntax for PSQL functions, parallel to
- DECLARE for legacy UDFs.

122

Chapter 10. Procedural SQL (PSQL)

Example

CREATE FUNCTION F(X INT) RETURNS INT
AS
BEGIN
RETURN X+1;
END;
SELECT F(5) FROM RDB$DATABASE;

PSQL Sub-routines

Adriano dos Santos Fernandes

The header of a PSQL module (stored procedure, stored function, trigger, executable block) can
now accept sub-procedure and sub-function blocks in the header declarations for use within the

body of the module.

Syntax for Declaring a Sub-procedure

DECLARE PROCEDURE name [(<param1> [, ...])]
[RETURNS (<param1> [, ...])]
AS

Syntax for declaring a Sub-function
DECLARE FUNCTION name [(<param1> [, ...])]

RETURNS <type>
AS

123

Chapter 10. Procedural SQL (PSQL)

Examples

SET TERM A;

-- Sub-function in EXECUTE BLOCK
EXECUTE BLOCK RETURNS (N INT)
AS
DECLARE FUNCTION F(X INT) RETURNS INT
AS
BEGIN
RETURN X+1;
END
BEGIN
N = F(5);
SUSPEND;
END A

-- Sub-function inside a stored function

CREATE OR ALTER FUNCTION FUNC1 (n1 INTEGER, n2 INTEGER)
RETURNS INTEGER
AS
DECLARE FUNCTION SUBFUNC (n1 INTEGER, n2 INTEGER)
RETURNS INTEGER
AS
BEGIN
RETURN n1 + n2;
END
BEGIN
RETURN SUBFUNC(n1, n2);
END A

select func1(5, 6) from rdb$database A

Packages

Adriano dos Santos Fernandes

Acknowledgement

o This feature was sponsored with donations gathered at the fifth Brazilian Firebird
Developers' Day, 2008

A package is a group of procedures and functions managed as one entity. The notion of “packaging”
the code components of a database operation addresses several objectives:

Modularisation

The idea is to separate blocks of interdependent code into logical modules, as programming
languages do.

124

Chapter 10. Procedural SQL (PSQL)

In programming, it is well recognised that grouping code in various ways, in namespaces, units
or classes, for example, is a good thing. With standard procedures and functions in the database
this is not possible. Although they can be grouped in different script files, two problems remain:

a. The grouping is not represented in the database metadata.

b. Scripted routines all participate in a flat namespace and are callable by everyone (we are not
referring to security permissions here).

To facilitate dependency tracking

We want a mechanism to facilitate dependency tracking between a collection of related internal
routines, as well as between this collection and other routines, both packaged and unpackaged.

Firebird packages come in two parts: a header (keyword PACKAGE), and a body (keyword PACKAGE
BODY). This division is very similar to a Delphi unit, the header corresponding to the interface
part, and the body corresponding to the implementation part.

The header is created first (CREATE PACKAGE), and the body (CREATE PACKAGE BODY) follows.

Whenever a packaged routine determines that it uses a certain database object, a dependency
on that object is registered in Firebird system tables. Thereafter, to drop, or maybe alter that
object, you first need to remove what depends on it. As it is a package body that depends on it,
that package body can just be dropped, even if some other database object depends on this
package. When the body is dropped, the header remains, allowing you to recreate its body once
the changes related to the removed object are done.

To facilitate permission management

It is good practice in general to create routines to require privileged use and to use roles or users
to enable the privileged use. As Firebird runs routines with the caller privileges, it is necessary
also to grant resource usage to each routine when these resources would not be directly
accessible to the caller. Usage of each routine needs to be granted to users and/or roles.

Packaged routines do not have individual privileges. The privileges act on the package.
Privileges granted to packages are valid for all package body routines, including private ones,
but are stored for the package header.

For example

GRANT SELECT ON TABLE secret TO PACKAGE pk_secret;
GRANT EXECUTE ON PACKAGE pk_secret TO ROLE role_secret;

To enable “private scope”

This objective was to introduce private scope to routines; that is, to make them available only for
internal usage within the defining package.

All programming languages have the notion of routine scope, which is not possible without some
form of grouping. Firebird packages also work like Delphi units in this regard. If a routine is not
declared in the package header (interface) and is implemented in the body (implementation), it
becomes a private routine. A private routine can only be called from inside its package.

125

Chapter 10. Procedural SQL (PSQL)

Signatures

For each routine that is assigned to a package, elements of a digital signature (the set of [routine
name, parameters and return type]) are stored in the system tables.

The signature of a procedure or routine can be queried, as follows:

SELECT...
-- sample query to come

Packaging Syntax

<package_header> ::=
{ CREATE [OR ALTER] | ALTER | RECREATE } PACKAGE name
AS
BEGIN
[<package_item> ...]
END

<package_item> ::=
<function_decl> ; |
<procedure_decl> ;

<function_decl> ::=
FUNCTION name [(<parameters>)] RETURNS <type>

<procedure_decl> ::=
PROCEDURE name [(<parameters>) [RETURNS (<parameters>)]]

<package_body> ::=
{ CREATE | RECREATE } PACKAGE BODY name
AS
BEGIN
[<package_item> ...]
[<package_body_item> ...]
END

<package_body_item> ::=
<function_imp1l> |
<procedure_impl>

<function_impl> ::=
FUNCTION name [(<parameters>)] RETURNS <type>
AS
BEGIN

END

I
FUNCTION name [(<parameters>)] RETURNS <type>

126

Chapter 10. Procedural SQL (PSQL)

EXTERNAL NAME 'name' ENGINE engine

<procedure_impl> ::=
PROCEDURE name [(<parameters>) [RETURNS (<parameters>)]]
AS
BEGIN

END

I
PROCEDURE name [(<parameters>) [RETURNS (<parameters>)]]

EXTERNAL NAME 'name' ENGINE engine

<drop_package_header> ::=
DROP PACKAGE name

<drop_package_body> ::=
DROP PACKAGE BODY name

Syntax rules

* All routines declared in the header and at the start of the body should be implemented in the
body with the same signature, i.e. you cannot declare the routine in different ways in the
header and in the body.

* Default values for procedure parameters cannot be redefined in <package_item> and
<package_body_item>. They can be in <package_body_item> only for private procedures that are
not declared.

* DROP PACKAGE drops the package body before dropping its header.

* The source of package bodies is retained after ALTER/RECREATE PACKAGE. The
column RDB$PACKAGES.RDB$VALID_BODY_FLAG indicates the state of the package
o body. See Tracker item CORE-4487.

* UDF declarations (DECLARE EXTERNAL FUNCTION) are currently not supported
inside packages.

» Syntax is available for a description (COMMENT ON) for package procedures and

functions and their parameters. See Tracker item CORE-4484.

Simple Packaging Example

127

http://tracker.firebirdsql.org/browse/CORE-4487
http://tracker.firebirdsql.org/browse/CORE-4484

Chapter 10. Procedural SQL (PSQL)

SET TERM A;
-- package header, declarations only
CREATE OR ALTER PACKAGE TEST
AS
BEGIN
PROCEDURE P1(I INT) RETURNS (0 INT); -- public procedure
END

-- package body, implementation

RECREATE PACKAGE BODY TEST

AS

BEGIN
FUNCTION F1(I INT) RETURNS INT; -- private function
PROCEDURE P1(I INT) RETURNS (O INT)

AS

BEGIN

END

FUNCTION F1(I INT) RETURNS INT

AS

BEGIN

RETURN 0;
END
END A

o More examples can be found in the Firebird installation, in examples/package/.
DDL triggers
Adriano dos Santos Fernandes

Acknowledgement
o This feature was sponsored with donations gathered at the fifth Brazilian Firebird

Developers' Day, 2008

The purpose of a “DDL trigger” is to enable restrictions to be placed on users who attempt to create,
alter or drop a DDL object.

Syntax

<database-trigger> ::=

{CREATE | RECREATE | CREATE OR ALTER}
TRIGGER name
[ACTIVE | INACTIVE]
{BEFORE | AFTER} <ddl event>
[POSITION number]

AS

BEGIN

128

Chapter 10. Procedural SQL (PSQL)

END

<ddl event> ::=
ANY DDL STATEMENT
| <dd1 event item> [{OR <ddl event item>}...]

<ddl event item> ::=
CREATE TABLE

| ALTER TABLE

| DROP TABLE

| CREATE PROCEDURE

| ALTER PROCEDURE

| DROP PROCEDURE

| CREATE FUNCTION

| ALTER FUNCTION

| DROP FUNCTION

| CREATE TRIGGER

| ALTER TRIGGER

| DROP TRIGGER

| CREATE EXCEPTION

| ALTER EXCEPTION

| DROP EXCEPTION

| CREATE VIEW

| ALTER VIEW

| DROP VIEW

| CREATE DOMAIN

| ALTER DOMAIN

| DROP DOMAIN

| CREATE ROLE

| ALTER ROLE

| DROP ROLE

| CREATE SEQUENCE

| ALTER SEQUENCE

| DROP SEQUENCE

| CREATE USER

| ALTER USER

| DROP USER

| CREATE INDEX

| ALTER INDEX

| DROP INDEX

| CREATE COLLATION

| DROP COLLATION

| ALTER CHARACTER SET

| CREATE PACKAGE

| ALTER PACKAGE

| DROP PACKAGE

| CREATE PACKAGE BODY

| DROP PACKAGE BODY

Semantics

129

Chapter 10. Procedural SQL (PSQL)

BEFORE triggers are fired before changes to the system tables. AFTER triggers are fired after
system table changes.

o Important Rule
The event type [BEFORE | AFTER] of a DDL trigger cannot be changed.

When a DDL statement fires a trigger that raises an exception (BEFORE or AFTER, intentionally or
unintentionally) the statement will not be committed. That is, exceptions can be used to ensure
that a DDL operation will fail if the conditions are not precisely as intended.

DDL trigger actions are executed only when committing the transaction in which the affected
DDL command runs. Never overlook the fact that what is possible to do in an AFTER trigger is
exactly what is possible to do after a DDL command without autocommit. You cannot, for
example, create a table in the trigger and use it there.

With “CREATE OR ALTER” statements, a trigger is fired one time at the CREATE event or the ALTER
event, according to the previous existence of the object. With RECREATE statements, a trigger is
fired for the DROP event if the object exists, and for the CREATE event.

ALTER and DROP events are generally not fired when the object name does not exist. For the
exception, see point 6.

The exception to rule 5 is that BEFORE ALTER/DROP USER triggers fire even when the user name
does not exist. This is because, underneath, these commands perform DML on the security
database, and the verification is not done before the command on it is run. This is likely to be
different with embedded users, so do not write code that depends on this.

If some exception is raised after the DDL command starts its execution and before AFTER triggers
are fired, AFTER triggers will not be fired.

Packaged procedures and triggers do not fire individual {CREATE | ALTER | DROP} {PROCEDURE |
FUNCTION} triggers.

Permissions

The following users can create, alter or drop DDL triggers and access the trigger-related switches in
the Firebird utilities:

the database owner

SYSDBA

a user logged in under the RDBADMIN role

a user having the ALTER DATABASE metadata privilege

Support in Utilities

A DDL trigger is a type of database trigger, so the parameters -nodbtriggers (ghak and isql) and -T
(nbackup) apply to them. Remember that only users with the appropriate metadata privileges can
use these switches.

130

Chapter 10. Procedural SQL (PSQL)

DDL_TRIGGER Context Namespace

The introduction of DDL triggers brings with it the new DDL_TRIGGER namespace for use with
RDBSGET_CONTEXT. Its usage is valid only when a DDL trigger is running. Its use is valid in stored
procedures and functions called by DDL triggers.

The DDL_TRIGGER context works like a stack. Before a DDL trigger is fired, the values relative to the
executed command are pushed onto this stack. After the trigger finishes, the values are popped. So
in the case of cascade DDL statements, when a user DDL command fires a DDL trigger and this
trigger executes another DDL command with EXECUTE STATEMENT, the values of the DDL_TRIGGER
namespace are the ones relative to the command that fired the last DDL trigger on the call stack.

Elements of DDL_TRIGGER Context

EVENT_TYPE event type (CREATE, ALTER, DROP)
OBJECT_TYPE object type (TABLE, VIEW, etc)
DDL_EVENT event name (<ddl event item>), where <dd1_event_item>is EVENT_TYPE || ' '

|| OBIECT_TYPE

OBJECT_NAME metadata object name
OLD_OBJECT_NAME for tracking the renaming of a domain (see note)
NEW_OBJECT_NAME for tracking the renaming of a domain (see note)

SQL_TEXT sql statement text

ALTER DOMAIN old-name TO new-name sets OLD_OBJECT_NAME and NEW_OBJECT_NAME in
both BEFORE and AFTER triggers. For this command, 0BJECT_NAME will have the old
object name in BEFORE triggers, and the new object name in AFTER triggers.

Examples Using DDL Triggers

Here is how you might use a DDL trigger to enforce a consistent naming scheme, in this case, stored
procedure names should begin with the prefix “SP_":

131

Chapter 10. Procedural SQL (PSQL)

set auto on;
create exception e_invalid_sp_name 'Invalid SP name (should start with SP_)"';

set term !;

create trigger trig_ddl_sp before CREATE PROCEDURE
as
begin
if (rdb$get_context('DDL_TRIGGER', 'OBJECT_NAME') not starting 'SP_') then
exception e_invalid_sp_name;
end!

-- Test

create procedure sp_test
as

begin

end!

create procedure test
as

begin

end!

-- The last command raises this exception and procedure TEST is not created
-- Statement failed, SQLSTATE = 42000

-- exception 1

-- -E_INVALID_SP_NAME

-- -Invalid SP name (should start with SP_)

-- -At trigger 'TRIG_DDL_SP' line: 4, col: 5

set term ;!

Implement custom DDL security, in this case restricting the running of DDL commands to certain
users:

132

Chapter 10. Procedural SQL (PSQL)

create exception e_access_denied 'Access denied';
set term !;

create trigger trig_ddl before any ddl statement
as
begin
if (current_user <> "SUPER_USER") then
exception e_access_denied;
end!

-- Test

create procedure sp_test
as

begin

end!

-- The last command raises this exception and procedure SP_TEST is not created
-- Statement failed, SQLSTATE = 42000

-- exception 1

-- -E_ACCESS_DENIED

-- -Access denied

-- -At trigger 'TRIG_DDL' line: 4, col: 5

set term ;!

Use a trigger to log DDL actions and attempts:

create sequence ddl_seq;

create table ddl_log (
id bigint not null primary key,
moment timestamp not null,
user_name varchar(31) not null,
event_type varchar(25) not null,
object_type varchar(25) not null,
ddl_event varchar(25) not null,
object_name varchar(31) not null,
sql_text blob sub_type text not null,
ok char(1) not null

)i

set term !;

create trigger trig_ddl_log_before before any ddl statement
as
