
...

2024/4

...

December 2024
www.firebirdsql.org

emberwings@firebirdsql.org​

http://www.firebirdsql.org/
mailto:emberwings@firebirdsql.org

The Firebird project was created at SourceForge​​​ on

July 31, 2000​

This marked the beginning of Firebird's development as
an open-source database based on the InterBase source
code released by Borland.
Since then, Firebird's development has depended on
voluntary funding from people and companies who
benefit from its use.​​

​Thank you for your support!​

EmberWings is a quarterly magazine published​ by the

Firebird Foundation z.s., free to the public after a 12-month
delay. Regular donors​​​ get exclusive early access to every

new edition upon release​.

Firebird Foundation z.s.

Support Firebird

...

https://sourceforge.net/projects/firebird/
https://www.firebirdsql.org/donate
https://firebirdsql.org/en/donate

In This Issue:In This Issue: A New Chapter for EmberWings​

Wisdom of the elders

Firebird Info Calls

Interview with Adriano dos Santos Fernandes

Development update: 2024/Q4

Toolbox: IBQuery

Answers to your questions

Planet Firebird

Notes on the effect of using ALTER INDEX

..And now for something completely different

A New Chapter for EmberWings​
Dear Readers,

Welcome to the December issue of EmberWings. This release marks an important

transition, as the magazine now operates under the care of the Firebird
Foundation. While the general concept of EmberWings remains the same, this shift

brings new opportunities to serve the Firebird community more effectively.

One of the key changes we’ve introduced is a more balanced focus on content.

Moving forward, EmberWings will aim to equally reflect the interests of both

Firebird administrators and application developers. By doing so, we hope to

provide practical value to all who rely on Firebird in their work.

This issue also marks the debut of Planet Firebird, a new regular section dedicated

to news and stories from the Firebird user community. This feature will highlight

events, real-world use cases, community achievements, and other updates,

offering readers insight into how Firebird is being utilized around the globe.

Looking ahead, future issues may include contributions from members of the

Firebird Project, now that EmberWings is the official publication of the project.

These articles will provide an inside perspective on development, features, and the

direction of Firebird, keeping readers informed about the database’s evolution.

Finally, each issue of EmberWings will now have a unique theme. For December,

we’ve embraced the Christmas season, while the March issue will take on an

Easter theme. These themes will guide the tone and focus of our content, providing

a sense of variety and seasonal relevance.

Thank you for reading and for your continued support of the Firebird community.

We look forward to bringing you more useful, balanced, and engaging content in

the months to come.

Warm regards,
The EmberWings Team

4

A young apprentice, eager to perfect his craft, approached the Master
Developer.

“Master,” the apprentice said, “I have built an application that uses the Firebird,
but I feel blind. How can I see the Firebird’s heart? How can I know its strength
and wisdom?”

The Master Developer closed his editor and turned to the apprentice. “The
Firebird is a quiet and patient creature,” he said. “It will not burden you with
more than you need. But if you ask it the right questions, it will tell you all.”

The Master then shared this tale:

Once, a traveler came to the forest where the Firebird dwelled. Seeing the
radiant bird perched upon the data tree, the traveler said, “O Firebird, tell me of
your world. How can I trust you to carry my dreams?”

The Firebird looked at the traveler and spoke. “My world is vast, but I reveal only
what is asked. To hear me, you must speak through the proper voices: the
attachment, the transaction, the statement, or the result set.”

The traveler was puzzled. “But why so many voices?

5

The Firebird replied, “Each voice knows a different truth:

The Attachment knows the whole of my being. Ask its getInfo, and it will tell
you of my abilities​, my state, and the parameters of my current tasks. It sees
the broadest view of my nest.
The Transaction knows the flow of work within me. Its getInfo whispers of
isolation levels and timeouts.
The Statement holds the plans of queries and their preparation. Its getInfo
reveals the strategies I use to turn questions into answers.
The Result Set carries the fruits of your queries. Its getInfo tells of fetched
rows.

To ask all questions of one voice would be like asking the wind to paint. Each
must speak in its own domain.”

The traveler thought deeply. “How will I know which voice to seek?”

The Firebird smiled. “Seek the heart of your question. When you need to see
the forest, call upon the attachment. When you wish to follow the stream, speak
to the transaction. When you need the plan of the journey, the statement will
answer. And when you wish to gather the fruits, the result set will guide you.
Listen well, and you will find your way.”

The Master Developer turned to the apprentice. “The Firebird’s voices are
clear and purposeful. Speak to them with respect, and they will reveal their
secrets. But remember: ask only what you need. The Firebird values simplicity
in its answers.”

The apprentice nodded, his understanding deepened. He returned to his
workstation and called upon the Firebird’s voices, listening to its whispers with
clarity and purpose. And as the Firebird spoke, the apprentice’s application
grew wiser and stronger.

6

Christmas Eve disaster​
It was a Christmas Eve disaster: an overeager elf accidentally ran a destructive
query on the "ShipmentLogs" table without a WHERE clause. The table was
wiped clean, and with it, the entire sleigh delivery schedule!

Panicked, Santa called the Firebird support team (consisting of Mrs. Claus and
a savvy penguin named Pete).

“Relax,” Pete said. “We’ve been using Firebird’s nbackup with multilevel
backups. Let’s restore the latest level 0 backup, then layer the incremental
backups on top of it.”

The team quickly restored the database by applying the backups step by step.
Within minutes, the "ShipmentLogs" table was fully restored, and Christmas
was back on track.

From then on, Santa implemented a strict policy: “Never skip the WHERE
clause.”

7

Firebird Info Calls
By Pavel Císař (IBPhoenix)

When developing applications and libraries working with Firebird, it is often
necessary to obtain information about the parameters and current state of the
server, connected databases, ongoing transactions and other important
elements that make up complex software such as a database server.

This information is available through system tables and dedicated API
functions, the so-called "info calls". These basic sources of information are
continuously expanded, including the introduction of completely new
methods of obtaining specific information such as monitoring tables, security-
related tables, or the trace service.

In this article, we will introduce you to the general mechanism of Firebird’s info
calls, as implemented in the original and new OO API, what information can be
obtained through them, and how some Firebird drivers, such as Jaybird, .NET
Provider or Python driver, work with the availability of this information.

8

What Are Info Calls?

Information calls are always tied to a specific active Firebird resource/element, e.g.

database connection, transaction, SQL query, query output, BLOB value, service

manager, etc. Within the API, one "info" function is then defined for each resource.

In the legacy API, these are separate functions with names following the

isc_*_info pattern (e.g. isc_database_info). In the modern OO API, these

are methods that are part of the relevant interface (and typically named

getInfo). All calls have a unified form of structured requests and responses

passed as input (request buffer) and output (response buffer) parameters.

Each piece of information that Firebird provides for a given resource has assigned

a non-zero numeric identification, the so-called "info code", and a specific binary

response format. One or more info codes can be specified in the request buffer,

thus obtaining several related pieces of information at the same time. It is

therefore a form of a simple language with binary representation.

The great advantages of this mechanism are its simplicity, universality, and

extensibility. The weakness is the need to parse the output buffer, and to deal with

possible insufficient output buffer size.

Requests and responses

The request for information is transmitted in a buffer as a sequence of one or more

info codes of one byte in size. Some info codes may have additional parameters

that are stored immediately after the request code, in a pre-specified format. If the

buffer is larger than the amount of data stored in it, it is necessary to close the

request with the isc_info_end (1) code.

It is necessary to reserve a sufficiently large buffer for the response, which is

passed to the relevant info function and, upon return, contains the requested data.

The response consists of blocks of data for individual info codes in the request.

Each block begins with the request info code (with few exceptions), followed by

the response data in the format according to the type of request. If the buffer is

not large enough, the isc info truncated (2) value is used instead of the info

9

code. If the response is complete and the entire buffer capacity is not used, the

entire sequence is closed with the one-byte isc_info_end (1) value. If the

request contains an incorrect info code, the engine returns an error code

isc_info_error (3).

Numbers are stored in little endian, and unless otherwise specified, as signed. They

​​are usually stored directly in the specified length. However, in specific cases they

are stored as sized, i.e. first 2 bytes of the number size in bytes, and then the value

itself.

Strings are always stored as sized, i.e. first the length of the string (unless

otherwise specified, then in two bytes) followed by the characters of the string.

Example call to isc_database_info (old API):

isc_database_info(status_vector, db_handle, sizeof(request),

​ request, sizeof(response), response);

Example call in the OO API:

db->getInfo(&status_vector, sizeof(db_info_items), db_info_items,

​ sizeof(buffer), buffer);

The secret language of info calls

The biggest obstacle to using info calls has always been the lack of comprehensive

documentation. Firebird inherited these calls from InterBase 6, and the only

documentation available at that time was the "InterBase API Guide". However, it

was soon discovered that the source code offers many more info codes than

described in the API documentation. Some codes were identified as no longer

valid, some never fulfilled a real function, others are intended only for internal use

within the implementation of APIs or drivers, but some codes have proven useful.

The documentation for them is not comprehensive at all, and in written form exists

mainly only in messages that can be found in the firebird-devel or

firebird-support archives. And of course in the Firebird source codes.

10

Over the years of Firebird development, new info codes have been and are being

added. They are documented in the Release Notes of the version that introduced

them, and in various text files in the /doc subdirectory of the Firebird installation.

Due to the lack of comprehensive documentation, support for info calls in Firebird

libraries and drivers is quite uneven. We’ll discuss this question later, but first let’s

take a look at what’s on offer.

Firebird info codes

For convenience, we list the names of the info codes as they are listed in the

inf_pub.h header file supplied with Firebird 5.0.

Database attachment

Info codes are defined via db_info_types enum, and are listed in order of their

value. Note that the sequence of values ​​is not continuous. This is because some

values ​​that are demonstrably no longer functional are not listed. However, some

meaningless values ​​are still available.

isc_info_db_id (4): Returns two or more character strings. The first string always

contains the database identifier, depending on the DatabaseAccess value in

firebird.conf. When set to "None" it is always the database alias, with other

values ​​it is always the full path to the connected database, regardless of whether

an alias or file specification was used to connect. The following one or more

(typically three) strings contain the server hostname, depending on the connection

method. For local protocol - just one string is returned, for network protocols -

three strings are returned (like with the isql SHOW VERSION command).

The data block consists from its length on two bytes, followed by number of strings

on one byte. Strings are stored in Pascal format (one byte of length, then

characters).​

isc_info_reads (5): Number of reads from disk to page cache. Cumulative value for

the database connection since its creation. The same applies to other I/O counters.

11

isc_info_writes (6): Number of writes from page cache to disk as sized integer.

isc_info_fetches (7): Number of fetches from page cache as sized integer. Formula

to calculate the cache hit ratio is: 1 - (reads / fetches).

isc_info_marks (8): Number of writes to page in cache as sized integer.

isc_info_implementation (11): Information about the Firebird implementation

serving this connection. This is the original version inherited from InterBase, which

was deprecated in Firebird 3 with the much more informative

fb_info_implementation code. However, it is and will continue to be

available.

The response consists from 2 bytes of total data length, followed by byte with the

number of two-byte sequences, where the first byte is the implementation code

(from info_db_implementations enum) and the second byte is the

implementation class code (from info_db_class enum). Like with

isc_info_db_id, you may get one or more such sequences in relation to

connection type.

isc_info_isc_version (12): Firebird version in text format, compatible with

InterBase. Firebird version numbering started from one, but the functionality was

based on InterBase v6. Some software checked the version and refused to work

with Firebird. Therefore, the answer to this code was modified to follow InterBase

v6 versioning. For example, Linux Firebird 5.0.1.1469 returns the string "LI-

V6.3.1.1469 Firebird 5.0". The letter "L" here means Linux, for Windows it returns

"W". Like with isql SHOW VERSION, it may return one or more strings.

The response consists from 2 bytes of total data length, followed by byte with the

number of strings. These are then stored in Pascal format.

isc_info_base_level (13): ​Another historical info code, the exact meaning of which

has been lost in the currents of time. According to the remnants of notes in the

source code, it should represent the version of the capabilities of the engine itself

(unlike ODS which is tied to the database structure). Historically, it corresponded

to the InterBase version (with a minor anomaly in version 4.1) and since Firebird is

based on InterBase 6, all versions of Firebird return this value. The data block

12

consists from ​its length on 2 bytes, one byte with number of byte codes, followed

by level codes. Once again, you may get one or more codes in relation to

connection type.

isc_info_page_size (14): Database page size as a sized integer value.

isc_info_num_buffers (15): Sized integer value of the database page cache size this

connection works with. The cache size may differ from the configured size if it has

been changed by a connection parameter (does not apply to SuperServer).

isc_info_limbo (16): Ids of transactions stuck in two-phase commit limbo. If there

are none, the response is empty, and info code is not present in response at all.

Otherwise, the response is made up of one or more blocks consisting of an info

code followed by a sized integer value with transaction ID.

isc_info_current_memory (17): Size (in bytes) of memory block currently used by

connection, as a sized integer value.

isc_info_max_memory (18): The max. size (in bytes) of memory block that was ever

used by connection since creation, as a sized integer value.

isc_info_window_turns (19): Deprecated. For some unknown reason it is still in the

header files. On use, the engine returns the error code isc_info_error (3).

isc_info_license (20): Deprecated. For some unknown reason it is still in the header

files. On use, the engine returns the error code isc_info_error (3).

isc_info_allocation (21): Number of pages allocated for the database, as a sized
integer value.

isc_info_attachment_id (22): Internal attachment ID as a sized integer value.

isc_info_read_seq_count (23): Number of rows read sequentially. Cumulative

value for the database connection since its creation. The output is more complex

because it contains values ​​for each table for which a non-zero value is recorded.

The first two bytes after the info code contain the total data size in bytes (multiples

of 6), followed by the appropriate number of data blocks: a two-byte table

identification plus a 4-byte counter value. The table identification correspond to

13

the value of the RDB$RELATION_ID column in the RDB$RELATIONS system

table. The same applies to other table counters.

isc_info_read_idx_count (24): Number of rows read with use of index. Format is

the same as with isc_info_read_seq_count.

isc_info_insert_count (25): Number of inserted rows. Format is the same as with

isc_info_read_seq_count.

isc_info_update_count (26): Number of updated rows. Format is the same as with

isc_info_read_seq_count.

isc_info_delete_count (27): Number of deleted rows. Format is the same as with

isc_info_read_seq_count.

isc_info_backout_count (28): Number of records that were reverted to previous

state (after rollback). Format is the same as with isc_info_read_seq_count.

isc_info_purge_count (29): Number of previous record versions that were

removed as no longer necessary. Format is the same as with

isc_info_read_seq_count.

isc_info_expunge_count (30): Number of records that were completely erased

from database. Format is the same as with isc_info_read_seq_count.

isc_info_sweep_interval (31): Sweep interval as a sized integer value.

isc_info_ods_version (32): Major ODS version as a sized integer value.

isc_info_ods_minor_version (33): Minor ODS version as a sized integer value.

isc_info_no_reserve (34): Database NO RESERVE flag as a sized integer value.

Follows block of deprecated WAL and JOURNAL items with values 35-51. For

some unknown reason they are still in the header files. On use, the engine returns

the error code isc_info_error (3).

14

isc_info_forced_writes (52): Database FORCED WRITES flag as a sized integer

value.

isc_info_user_names (53): Returns a sequence of one or more blocks with the

names of users connected to this database. Each block is a sequence consisting of

an info code, 2 bytes with the size of the following data block, a string of characters

in Pascal format (one byte length followed by characters). This list is never empty.

The following info codes are used by the GFIX utility and are of no particular

importance to application developers: isc_info_page_errors (54),

isc_info_record_errors (55), isc_info_bpage_errors (56), isc_info_dpage_errors
(57), isc_info_ipage_errors (58), isc_info_ppage_errors (59) and

isc_info_tpage_errors (60).

isc_info_set_page_buffers (61): This info code is used by the GBAK utility, and is of

no real use to application developers.

isc_info_db_sql_dialect (62): Database SQL Dialect as a sized integer value.

isc_info_db_read_only (63): Database READ ONLY flag as a sized integer value.

isc_info_db_size_in_pages (64): Number of used database pages as a sized integer

value. The value is the same or smaller than number of pages allocated for the

database.

Values 65 - 100 are unused to avoid conflict with InterBase.

frb_info_att_charset (101): Attachment character set as a sized integer value. The

character set ID corresponds to the value of the RDB$CHARACTER_SET_ID

column in the RDB$CHARACTER_SETS system table.

isc_info_db_class (102): The database access class as a sized integer value. The

class code corresponds to an item from info_db_class enumeration. It’s a bit

esoteric, but it can help you differentiate between local and remote access.

15

isc_info_firebird_version (103): Returns one or more strings identifying the

Firebird version, similar to the output of the isql SHOW VERSION command.

Returns one string when accessed locally, three strings when accessed remotely.

Theoretically, there could be more if a gateway was involved. The data block (after

the info code) consists of the total length of the data stored in 2 bytes, the number

of strings in one byte, followed by the specified number of strings in Pascal format.

Example of output for remote access:

LI-V5.0.1.1469 Firebird 5.0

LI-V5.0.1.1469 Firebird 5.0/tcp (MyHost)/P18:C

LI-V5.0.1.1469 Firebird 5.0/tcp (MyHost)/P18:C

isc_info_oldest_transaction (104): Oldest Interesting Transaction (OIT) as a sized

integer value.

isc_info_oldest_active (105): Oldest Active Transaction (OAT) as a sized integer

value.

isc_info_oldest_snapshot (106): Oldest Snapshot Transaction (OST) as a sized

integer value.

isc_info_next_transaction (107): Next Transaction ID as a sized integer value.

isc_info_db_provider (108): Database Provider as a sized integer value. For

Firebird it is always 4, InterBase has value 3.

isc_info_active_transactions (109): Ids of active transactions. If there are none, the

response is empty, and info code is not present in response at all. Otherwise, the

response is made up of one or more blocks consisting of an info code followed by a

sized integer value with transaction ID.

isc_info_active_tran_count (110): Number of active transactions as a sized integer

value.

isc_info_creation_date (111): Database creation timestamp (without time zone).

The data block is formed by its length on 2 bytes, followed by the appropriate

number of bytes, in this case it is always 8. The first 4 bytes are the date

16

(ISC_DATE structure), the next 4 bytes are the time (ISC_TIME structure). The

isc_decode_timestamp function can be used for conversion in the legacy API,

IUtil.decodeDate/decodeTime in the OO API.

isc_info_db_file_size (112): A sized integer value used internally by NBACKUP, and

is of no real use to application developers.

fb_info_page_contents (113): This info code returns the contents of the specified

database page if the user is SYSDBA. For other users, it returns isc_info_error

(3). In the request, the info code must be followed by a sized integer value with the

sequence number of the page to be returned. The response data block contains 2

bytes of length, followed by the appropriate number of bytes of the page contents.

fb_info_implementation (114): More fine-grained implementation information

than old isc_info_implementation. The response consists 2 bytes of total

data length, followed by byte with the number of six-byte sequences: CPU ID, OS

ID, compiler ID, flags, implementation class and current depth of implementation

stack (when multiple versions are mixed).

Meaning of first four values is defined only in Firebird sources (see

DbImplementation.cpp) as they are missing from header files supplied with

Firebird. Like with isc_info_db_id, you may get one or more such sequences in

relation to connection type.

The following info codes are used by the GFIX utility and are of no particular

importance to application developers: fb_info_page_warns (115),

fb_info_record_warns (116), fb_info_bpage_warns (117), fb_info_dpage_warns
(118), fb_info_ipage_warns (119), fb_info_ppage_warns (120),

fb_info_tpage_warns (121), fb_info_pip_errors (122) and fb_info_pip_warns (123).

fb_info_pages_used (124): Number of used database pages as a sized integer

value.

fb_info_pages_free (125): Number of free database pages as a sized integer value.

isc_info_active_tran_count (110): Number of active transactions as a sized integer

value.

17

fb_info_ses_idle_timeout_db (129): Idle connection timeout value as defined in

configuration, stored as a sized integer value.

fb_info_ses_idle_timeout_att (130): Idle connection timeout value as defined at

connection level, stored as a sized integer value.

fb_info_ses_idle_timeout_run (131): Actual idle connection timeout value for

given connection considering values set at configuration and connection levels,

stored as a sized integer value. The "effective value" is evaluated every time user

API call leaves the engine.

fb_info_conn_flags (132): Connection flags as a sized integer value. Individual flags

are encoded as bits: COMPRESSED = 0x01, ENCRYPTED = 0x02.

fb_info_crypt_key (133): Name of encryption key, as sized string.

fb_info_crypt_state (134): Database encryption flags as a sized integer value.

Individual flags are encoded as bits (of db_info_crypt enum):

fb_info_crypt_encrypted = 0x01, fb_info_crypt_process = 0x02​

fb_info_statement_timeout_db (135): Idle statement timeout value as defined in

configuration, stored as a sized integer value.

fb_info_statement_timeout_att (136): Idle statement timeout value as defined at

connection level, stored as a sized integer value.

fb_info_protocol_version (137): Network protocol version, as a sized integer

value.

fb_info_crypt_plugin (138): Name of encryption plugin, as sized string.

fb_info_creation_timestamp_tz (139): Database creation timestamp with time

zone. The data block is formed by its length on 2 bytes, followed by the appropriate

number of bytes that are the ISC_TIMESTAMP_TZ structure. Function

IUtil.decodeTimeStampTz in the OO API can be used for conversion.

fb_info_wire_crypt (140): Name of wire encryption plugin, as sized string.

18

fb_info_wire_crypt (140): Name of wire encryption plugin, as sized string.

fb_info_features (141): List of features supported by current connection provider.

The data block is formed by its length on 2 bytes, followed by the appropriate

number of bytes. Each byte in array is one value from info_features

enumeration:

fb_feature_multi_statements (1): Multiple prepared statements in single

attachment.

fb_feature_multi_transactions (2): Multiple concurrent transaction in single

attachment.

fb_feature_named_parameters (3): Query parameters can be named.

fb_feature_session_reset (4): ALTER SESSION RESET is supported.

fb_feature_read_consistency (5): Read Consistency transaction isolation level is

supported.

fb_feature_statement_timeout (6): Statement timeout is supported.

fb_feature_statement_long_life (7): Prepared statements are not dropped on

transaction end.

fb_info_next_attachment (142): ID of next attachment, as a sized integer value.

fb_info_next_statement (143): ID of next statement, as a sized integer value.

fb_info_db_guid (144): Database GUID as sized string.

fb_info_db_file_id (145): Unique database file ID as sized string. Usually a 32

character long hexadecimal number. Used internally in the SRP manager.

fb_info_replica_mode (146): Replica mode as sized integer value: none = 1, read

only = 1, read write = 2.

fb_info_username (147): User name as sized string.

fb_info_sqlrole (148): User role as sized string.

19

Transaction

Transaction information could be obtained using isc_transaction_info

function in legacy API, or ITransaction.getInfo method in OO API. Codes

are defined as isc_info_tra_* and fb_info_tra_* constants, and are listed

in order of their value.

isc_info_tra_id (4): Transaction ID, as sized integer value.

isc_info_tra_oldest_interesting (5): Oldest interesting transaction (OIT) as seen by

this transaction, as sized integer value.

isc_info_tra_oldest_snapshot (6): Oldest snapshot transaction (OST) as seen by

this transaction, as sized integer value.

isc_info_tra_oldest_active (7): Oldest active transaction (OAT) as seen by this

transaction, as sized integer value.

isc_info_tra_isolation (8): Transaction isolation level. First two bytes is length of

following byte array, where each byte encodes the transaction level.

First value is always one from: isc_info_tra_consistency (1),

isc_info_tra_concurrency (2) or isc_info_tra_read_committed (3).

For read committed isolation, the second byte defines its variant:

isc_info_tra_no_rec_version (0), isc_info_tra_rec_version (1) or

isc_info_tra_read_consistency (2).

isc_info_tra_access (9): Transaction access as sized integer value, one from:

isc_info_tra_readonly (0) or isc_info_tra_readwrite (1).

isc_info_tra_lock_timeout (10): Transaction lock timeout as sized integer value.

Value -1 means WAIT, zero is NOWAIT, non-zero positive value is wait timeout set

explicitly.

fb_info_tra_dbpath (11): The DSN of the parent database connection. Are you

wondering what good is this at the transaction level when similar information is

available at the database connection level? Well, this code is used by the

20

distributed transaction manager.

fb_info_tra_snapshot_number (12): Transaction snapshot number as sized integer

value. Important information when creating parallel processes that work with a

consistent database state.

Statement

DSQL statement information could be obtained using isc_dsql_sql_info

function in legacy API, or IStatement.getInfo method in OO API. Codes are

defined as isc_info_sql_* constants, and are listed in order of their value.

Codes 4 - 20, and 25 are used internally to describe input and output query

parameters.

isc_info_sql_stmt_type (21): Statement type as sized integer value. The type of

command (e.g. INSERT, UPDATE, EXECUTE PROCEDURE, etc.) allows you to

identify its properties and behavioral characteristics. Firebird 5 defines a total of

12 types of DSQL commands. Values are defined as isc_info_sql_stmt_*

constants.

isc_info_sql_get_plan (22): Execution plan in classic form as sized string.

isc_info_sql_records (23): The number of rows affected by the SQL statement.

Values ​​are available only after the statement is executed, and for selects it reflects

only fetched rows. The database engine’s own support for the determination of

affected rows is quirky. The database engine only supports the determination of

rowcount for INSERT, UPDATE, DELETE, and SELECT statements. When stored

procedures become involved, row count figures are usually not available to the

client.

First two bytes is length of following data cluster, which consists of several blocks

formed from a single-byte operation code followed by the number of rows as sized

integer value. Operation codes are: isc_info_req_select_count (13),

isc_info_req_insert_count (14), isc_info_req_update_count (15)

and isc_info_req_delete_count (16).

21

isc_info_sql_batch_fetch (24): Batch fetch flag as sized integer value. Value 1

means that data are fetched in batches.

isc_info_sql_explain_plan (26): Execution plan in explained form as sized string.

isc_info_sql_stmt_flags (27): Statement flags as sized integer value. The flag values

​​are not defined in the inf_pub.h file, but in IdlFbInterfaces.h as constants

on IStatement interface: FLAG_HAS_CURSOR = 0x1 and

FLAG_REPEAT_EXECUTE = 0x2.

isc_info_sql_stmt_timeout_user (28): Timeout value for given statement as sized

integer value.

isc_info_sql_stmt_timeout_run (29): Sized integer value with actual timeout value

for given statement evaluated considering values set at config, attachment and

statement levels. It’s valid only when timeout timer is running, i.e. for currently

executed statements.

isc_info_sql_stmt_blob_align (30): Blob stream alignment as sized integer value.

Used internally with network protocols older than version 17 (Firebird 5 uses

version 18). Not useful for application developers.

Codes isc_info_sql_exec_path_blr_bytes (31) and isc_info_sql_exec_path_blr_text
(32): BLR representation of the statement in binary and text format, as sized byte

array or string. This information can only be obtained with the appropriate SET

DEBUG OPTIONS setting (SQL command available since Firebird 4.0.1). It is of

little value to regular application developers, but it is important to developers of

tools and libraries.

Blobs

Information about fetched BLOB could be obtained using isc_blob_info

function in legacy API, or IBlob.getInfo method in OO API. Codes are defined

as isc_info_blob_* constants, and are listed in order of their value.

22

isc_info_blob_num_segments (4): The total number of segments that make up this

segmented blob, as sized integer value.

isc_info_blob_max_segment (5): The maximum size of a segment that creates a

segmented BLOB object, as sized integer value. It is used to determine the size of

the buffer for working with a BLOB value.

isc_info_blob_total_length (6): Total BLOB length in bytes, as sized integer value.

isc_info_blob_type (7): BLOB type as sized integer value. Values are defined as

isc_bpb_type_segmented (0) and isc_bpb_type_stream (1) constants.

Result set

Firebird 5 added getInfo method to IResultSet interface. So far it supports

only one info code INF_RECORD_COUNT (10) defined on the interface, which

returns the number of cached rows for scrollable cursors, as sized integer value.

For non-scrollable cursors returns -1.

All others

There are additional getInfo methods defined on IBatch, IRequest and

IExternalContext interfaces. Info codes for IBatch are defined as INF_*

constants on interface, and might be interesting only to those that construct

batches at such low level (i.e. driver developers). Interface IRequest is used only

to work with BLR requests, which are not used by application developers as they

use the higher-level DSQL interface. And finally the IExternalContext

interface, which interests only Firebird extension developers, already provides

direct methods to obtain all essential information they need.

23

Info calls in Firebird drivers and access libraries

Jaybird Java driver

Jaybird API generally handles the info calls itself, and presents results to the user.

As such, users generally don’t need to execute or parse info calls themselves.

For example:

Basic information about the database (ODS, dialect) is accessible through

FirebirdDatabaseMetaData.

Transaction information (oldest, oldest active, oldest snapshot, etc) is available through

FBStatisticsManager.getDatabaseTransactionInfo

Table statistics are available through FBTableStatisticsManager

Execution/explained plans can be obtained from

FirebirdStatement/FirebirdPreparedStatement (depends on Jaybird version).

Statement counts can be obtained from FirebirdStatement.getSqlCounts()

Parameter/column information is exposed through standard JDBC APIs

ResultSetMetaData and ParameterMetaData.

However, some of those options are not (or only high-level) documented in the

Jaybird Manual, so that is something that needs some work.

If you really want to, you can dive into the GDS-ng API, and use the internal/low-

level API:

FbDatabase.getDatabaseInfo

FbStatement.getSqlInfo

FbStatement.getCursorInfo, not supported for native, nor for Firebird 4.0 or lower

for pure Java (wire protocol)

FbTransaction.getTransactionInfo

FbBlob.getBlobInfo

There are two variants of this API, one for native client library and one for direct

network protocol access. These are basically thin wrappers around opcodes for

the wire protocol, or legacy API functions for the native implementation.

24

These methods accept a byte-array with the info items, and a buffer length, and -

for the second variant - an "InfoProcessor". The first variant returns a byte array

with the server response, the second variant returns an object produced by

feeding the response of the server to the InfoProcessor. The InfoProcessor is an

interface where you can implement parsing of the information response to

produce an object.

However, this is considered an internal Jaybird API, and the maintainer’s stance is

that if you need to delve into this level, you should file a feature request in issue

tracker at GitHub.

.NET Provider

The situation with the .NET provider is similar to Jaybird. All the primary

important information is provided directly at the object level, but it is not a

complete set. Access to lower levels is then more complicated than with Jaybird,

and if you are missing access to some information, you should file a feature request

in issue tracker at GitHub

Python drivers

Because Python is used for testing in Firebird development, support for info calls

in official Python drivers is traditionally above standard, and if possible complete.

Because the concept of information access differs between the two drivers, we will

focus only on the new firebird-driver in latest version, and omit the legacy

FDB driver.

Since the repertoire of info codes expands with each Firebird version, the handling

of these calls is encapsulated in a separate hierarchy of classes derived from the

InfoProvider class. The "info" property is then defined on the Connection,

Transaction, and Statement classes, which provides access to the

InforProvider instance corresponding to the connected Firebird version.

Info codes for individual areas are defined as separate enum types, e.g.

DbInfoCode for connections or TraInfoCode for transactions. Each

InfoProvider provides two functions: supports() and get_info(), which

are passed the required info code. The first returns a boolean value indicating
25

whether the given info code is supported, and the second returns the return value

of the info call.

For convenience, InfoProviders also provide the most frequently used information

as separate properties or methods that perform the corresponding get_info()

call in the background. For information that is static in nature, such as ODS

version, database page size, etc., the returned value is cached.

The driver currently does not support InfoProviders at the IResultSet and IBlob

levels because important information is made available in a different way.

Firebird access libraries

Support in Firebird libraries varies considerably. The most important factor is

specialization. Libraries designed to work with multiple database types (such as

FireDAC, ODBC) offer only limited access to information available through info

calls. Libraries specialized for working with Firebird (such as IBX for Lazarus)

typically have a much better level of support.

26

...

The Christmas Temp Table Magic​

With millions of presents to track, the elves needed a quick way to calculate
delivery priorities. One clever elf suggested using a temporary table.

They created a Firebird TEMPORARY TABLE to store real-time data for each
delivery zone. This allowed them to run lightning-fast calculations without
impacting the main database.

Santa was so impressed with how quickly the sleigh’s schedule was optimized
that he renamed the process “Temp Table Tactics” and made it part of the
official Christmas workflow.

27

Interview with Adriano dos Santos Fernandes

Adriano dos Santos Fernandes is a software developer from Brazil and a core

member of the Firebird SQL development team. Over 20 years, Adriano has

contributed significantly to areas such as internationalization, multi-byte

character support, advanced SQL features, user-defined routines, and Java

integration. His work also includes reviewing and improving the Firebird codebase.

28

To begin, could you share a bit of background about yourself? Where do you live,
and what other interests do you have besides Firebird?

I live in a small city in São Paulo state in Brazil since I was born. I became interested

in computers and programming when I was 9 years old (currently 41). My brother

had contact with dBase III Plus and Clipper Summer 87 in a course (before the

instructors disappeared) and in his work, and started to teach me as he was

learning. At that time, we didn’t have a computer at home and I had never used one​

. So I was writing small programs like calculator and tic-tac-toe game with a pencil

in a paper. Something like a year later, he bought a computer and we were able to

make my programs actually work after a few corrections. He was going to work in

the afternoons, and allowed me to use his computer. I split my time on it to play

games and learning more technologies, like Access, Visual Basic, Delphi, C/C++ and

later Java.

While programming has become a profession for me, I still consider it a hobby too.

I like to learn and do different things with technology.

Another of my hobbies is to drive go-karts. There is a good go-kart track in my city,

and I participate in a championship there.

Although you weren’t with Firebird from the very beginning, you joined fairly
early—if I remember correctly, it was around 2004, when version 2.0 was in
development. Could you share what led you to Firebird and how you became
involved with the project?

Around 2000, I discovered Harbour, an open-source Clipper clone in development,

and was immediately drawn to the open-source. I played a lot with its source code

as I became very interested in compiler development, and also created some

incomplete Clipper clones on my own. I never tried to contribute anything to

Harbour directly, but I was using MinGW (GCC for Windows) which had an

annoying problem that caused C++ exceptions to fail across DLL boundaries unless

the MinGW DLL was used instead of the static library. So I learned things from

GCC and MinGW, and was able to made the necessary modifications to make a fix,

which was subsequently incorporated there.

A bit later I remember seeing some news about Interbase becoming open source

which caught my attention, though I didn’t dive into it right away. But later I

29

started to use InterBase with Delphi, replacing the Paradox engine, and specially

its transaction control impressed me. So I remembered about the open source

news, switched to Firebird and became interested in its code.

I think it was around 2002 when I started to send emails to fb-devel regarding

building the code, minor bugs and their potential fixes.

Your first major contribution to Firebird was a complete overhaul of international
character-set handling. Since then, with numerous developments in this area,
you’ve become the leading expert in internationalization and localization
support for Firebird. Could you share some insights from this journey? What led
you to choose this area initially, and what have been the biggest challenges over
the years?

Some Brazilians reached out to me after noticing that I’m also Brazilian and active

in the fb-devel group. They wanted to discuss their project for a PT_BR collation

(Portuguese-Brazilian case-insensitive). However, their proposal wasn’t accepted

by the Firebird project because it was implemented in the simplest way possible,

essentially as a quick hack. Although I was aware of their project and understood

how crucial such a collation is for Brazil, I had never considered getting involved

until then.

My knowledge in this area was basic, but it guided my involvement with Firebird,

leading to many discussions, particularly with Nickolay Samofatov.

It was a very challenging project, as it required integrating a large external library

(ICU) and making extensive changes to the core engine, as well as to existing

character sets and collations. The process was time-consuming, and managing the

integration using CVS branches added another layer of complexity.

The last major feature you developed in this area was the introduction of
TIME/TIMESTAMP WITH TIME ZONE data types in Firebird 4. Do you feel that
Firebird now has all the necessary tools for full internationalization, or is there
something still missing that you’d like to implement?

I think it’s now one of the most complete among DBMS, and there has never been

significant demand for missing features like wide character sets (UTF-16).

30

While other core developers primarily work on Firebird’s internal structures,
services, protocols, and execution paths, your focus has been on adding and
enhancing user-facing features, such as improving SQL standard support,
introducing new built-in functions, and developing the SQL profiler. What led
you to choose this direction?

I think this was driven by my interest in compiler technologies and the fact that

others were focused on different areas. Interestingly, when I was a child and just

starting to learn, compression and indexing technologies were my biggest

interests. Yet, I never ended up working in those areas within Firebird.

I’m sure Firebird users appreciate your choice, as the number of features you’ve
developed over the years is truly impressive. It’s hard to say which one is the
most important since each user has their own favorite. But which feature is your
personal favorite, and why? Feel free to mention more than one if it’s hard to
choose just one.

Without going deep on all features I have developed, I’d say packages and

subroutines. I consider isolated routines and its dependency management a

nightmare.

Another favorite of mine isn’t immediately visible: the extensive refactoring of the

previous dsql_nod and jrd_nod structures. This effort transformed all internal

SQL/PSQL-related structures into object-oriented and almost self-contained

entities, significantly simplifying maintenance and enabling easier development of

new features.

For Firebird 6, you’ve already completed several smaller features, such as the
CALL statement, named arguments for function calls, and DROP [IF EXISTS]. The
major new feature you’re currently working on is SQL standard-compliant
Schema support, which has been one of the most requested features by Firebird
users. How is that progressing?

This is undoubtedly the most complex task I’ve undertaken. It affects every aspect

where an object name is used: permissions, interfaces with external code and

users, query aliases, execution plans, arrays, and both forward and backward

compatibility. While many aspects are already complete, some tricky issues remain

unresolved. Additionally, everything related to ISQL is still pending.​

31

Most users have little idea of how Firebird development actually unfolds. Since
you’ve been dedicated to long-term, full-time development, could you give them
a glimpse behind the scenes? What does a typical day or week look like for you
working on Firebird?

I’d say it depends on the task at hand. When working on smaller tasks, new valid

issues and features tend to grab attention and get resolved quickly. However,

when working on larger tasks, such as schemas, I tend to be much more selective

about switching tasks.

You’ve been developing Firebird for twenty years now, which is an impressive
career by any measure. Looking back on all those years, how do you feel about
your journey with Firebird? Is there anything you would change, or has it been a
completely satisfying experience?

It’s satisfying but sometimes complicated. The code is complex and that is

challenging. But people have their taste, ego and agenda and this is much more

difficult to deal with in an open source project than in a company.

Brazil is undoubtedly the country with the largest number of Firebird users, and
it has a very active community. As the only local Firebird core developer, I
imagine your involvement in the community is highly sought after. Are you active
in the local community, contributing to support forums, or attending
conferences?

I was more involved in some mailing lists in the past, but that has decreased to

almost zero. Written questions rarely provide all the necessary details to answer

them well in one reply, which leads to protracted conversations. Nowadays, people

are more interested in videos and conferences, which are not things I enjoy.

Fortunately, there are others, like Alexey Kovyazin, Edson Gregório, and Carlos

Cantu, who are doing a great job in that area.

Thanks for you time!​

32

The Elf Who Loved Joins​

Elf Dexter was a fan of complex SQL queries. For every task, he crafted
intricate JOIN statements involving half a dozen tables. But one day, his query
to find the "Top 10 Most Difficult Toys to Build" took hours to run.

Mrs. Claus stepped in to help. She examined Dexter’s query and noticed he
hadn’t indexed the "ToyParts" table. After adding an index and simplifying
some conditions, the query ran in seconds.

Dexter learned that while Firebird could handle his love for joins, optimization
was key. "Indexes are a database’s best friend!" he said, now a wiser query
writer.

33

Development update: 2024/Q4
A regular overview of new developments and releases in Firebird Project​

Releases:
Jaybird 6.0.0-beta-1, released 11.11.2024

Jaybird 5.0.6, released 16.10.2024

FirebirdClient 10.3.2.0, released 10.12.2024

EF provider - 10.1.0.0, released 10.12.2024

firebird-driver for Python 1.10.7, released 15.12.2024

firebird-testcontainers-java 1.5.0, release 16.12.2024

The ROW type

Alexey Mochalov is finalizing the development of the SQL-compliant ROW data

type and has presented a proposal describing the syntax and logic of this feature.

The discussion is still ongoing, so it is too early to give a more detailed report.

34

https://github.com/FirebirdSQL/jaybird/releases/tag/v6.0.0-beta-1
https://github.com/FirebirdSQL/jaybird/releases/tag/v5.0.6
https://github.com/FirebirdSQL/NETProvider/releases/tag/FirebirdClient-10.3.2.0
https://github.com/FirebirdSQL/NETProvider/releases/tag/EF-10.1.0.0
https://pypi.org/project/firebird-driver/
https://github.com/FirebirdSQL/firebird-testcontainers-java/releases/tag/v1.5.0

Package constants

Red Soft recently implemented Package Constants and submitted a feature

specification for discussion and approval before a pull request is created for

Firebird 6. The discussion is still ongoing, so it is too early to give a more detailed

report.

Tablespaces

Since the last discussion, it has been decided to add next functionality:

Add the main database file to the RDB$TABLESPACES table, designated as

PRIMARY.

Add option to transfer tablespace to main database on restore.

Add TEMPORARY predefined tablespaces.

The Pull Request is now in review.

Schema support (preliminary documentation)

Firebird 6.0 introduces support for schemas in the database. Schemas are not an

optional feature, so every Firebird 6 database has at least a SYSTEM schema,

reserved for Firebird system objects (RDB$ and MON$).

User’s objects live in different schemas, which may be the automatically created

PUBLIC schema or user-defined ones. It’s not allowed (with an exception about

indexes) to create or change objects in the SYSTEM schema.

This documentation explains how schemas work in Firebird, how to use them and

what may be different when migrating a database from previous versions to

Firebird 6.

35

https://github.com/FirebirdSQL/firebird/pull/8314

Why schemas

Schemas allow the logical grouping of database objects (such as tables, views and

indexes), providing a clear structure to the database. Mostly frequently, they are

used for two different purposes.

Schemas for database object organization

This usage of schemas helps in organizing database objects in a modular way,

making the database easier to manage and maintain. By dividing the database into

different schemas, developers and administrators can focus on specific areas of the

database, improving teams scalability and reducing complexity.

For example, the SYSTEM schema is used with this purpose, separating objects

created by two different groups (the Firebird DBMS core team and the Firebird

users).

Firebird users may also want to organize objects in different schemas, for example,

creating schemas like FINANCE and MARKETPLACE in the same database.

Schemas for data isolation

In multi-tenant applications, schemas can be leveraged to provide data isolation

for different clients or tenants. By assigning a unique schema to each tenant, tables

and others objects can be created with the same names in different schemas,

making it more difficult to leak data and sometimes increasing the performance.

Applications can then set the schema search path for the current selected

customer.

This also simplifies database management and scaling, as each tenant’s data is

isolated within its schema, making maintenance, updates, and backups more

straightforward.

Example schemas names could be CUSTOMER_1 and CUSTOMER_2.

36

Schema-less and schema-bound objects

There are two categories of database objects: schema-less and schema-bound

objects.

Some database objects live outside of schemas, and for them, everything works as

before. They are: Users, Roles, Blob filters and Schemas.

The others are now always contained in a schema: Tables, Views, Triggers,

Procedures, Exceptions, Domains, Indexes, Character sets, Sequences /

generators, Functions, Collations and Packages

Some objects are highly dependent on their parents, like table-based triggers and

indexes depending on the table. In this case the child object always lives in the

same schema of its parent.

Search path

Every Firebird session has a search path, which is a list of schemas that is used to

resolve not-qualified object names. By default, the initial search path is PUBLIC,

SYSTEM.

This default can be changed using isc_dpb_search_path in the API or later

changed using the SET SEARCH_PATH TO statement.

ALTER SESSION RESET resets the search path to the initial search path, i.e. the

one passed to isc_dpb_search_path or the default (PUBLIC, SYSTEM).

Non-existing schemas may be present in the search path, and in this case, they are

not considered.

The first existing schema in the search path is called the current schema and is

exclusively used in some operations.

Bind of unqualified objects to a schema generally happens at statement prepare

time. An exception to this rule is MAKE_DBKEY function with expression (not

simple literal) as first argument, making it resolve the table at execution time.

Object names may be now qualified with the schema name, for example

SCHEMA_NAME.TABLE_NAME, SCHEMA_NAME.TABLE_NAME.COLUMN_NAME,

37

SCHEMA_NAME.PACKAGE_NAME.PROCEDURE_NAME. But the schema qualifier is

optional. And here is where the search path is used, and it is used in different ways

depending on where the unqualified name appears.

With CREATE, CREATE OR ALTER and RECREATE statements, an existing object

is searched only in the current schema (the first valid schema present in the

search path) and the new object is created in this same schema. That same rule is

also used with GRANT and REVOKE statements related to DDL operations without

using ON SCHEMA sub clause. If there is no current schema (no valid schema in

the search path), an error will be raised.

Examples using this rule:​

create table TABLE1 (ID integer);

recreate table TABLE1 (ID integer);

create or alter function F1 returns integer as begin end;

grant create table to user USER1;

With ALTER, DROP and others statements, an existing object is searched in all

schemas present in the search path, and the reference is bound to the first one

found, or an error is raised.

Examples using this rule:

alter table TABLE1 add X integer;

alter function FUNCTION1 returns integer as begin end;

select * from TABLE1;

There is also a difference in relation to search paths in DML vs DDL statements.

With DML statements, the search path is used to find all the referenced

unqualified objects. For example:

insert into TABLE1 values (1);

execute block returns (out DOMAIN1)

as

begin select val from TABLE2 into out;

end;

38

In this case, the search path is used to find TABLE1, DOMAIN1 and TABLE2.

With DDL statements, it is actually used to search in the same way, but the search

path is implicitly temporarily changed just after the object being created/changed

is bound to a schema when preparing the statement. The change makes the search

path equal to the schema of the object followed by the SYSTEM schema.

For example:

create schema SCHEMA1;

create schema SCHEMA2;

create domain SCHEMA1.DOMAIN1 integer;

-- DOMAIN1 is bound to SCHEMA1 even without it being in the search path,

​-- as the table being created is bound to SCHEMA1

create table SCHEMA1.TABLE1 (id DOMAIN1);

set search_path to SCHEMA2, SCHEMA1;

-- Error: even if SCHEMA1 is in the search path,

​-- TABLE2 is bound to SCHEMA2, so DOMAIN1 is searched in

​-- SCHEMA2 and SYSTEM schemas

create table TABLE2 (id DOMAIN1);

set search_path to SYSTEM;

create procedure SCHEMA1.PROC1

as

begin

​ -- TABLE1 is bound to SCHEMA1 as PROC1

​ insert into TABLE1 values (1);

end;

Resolving between PACKAGE.OBJECT and SCHEMA.OBJECT

There is now an ambiguity in the syntax <name>.<name> between <package>.

<object> and <schema>.<object> when referring to procedures and

functions.

39

In this case it first looks for a package using the search path, and if it exists, bound

its name treating the expression as <package>.<object> in the found

<schema>.

If the package is not found, then the name is treated as an already qualified name

(<schema>.<object>).

Permissions

Permissions to control and use schema-bound objects are now influenced by the

schema permissions.

A schema, like other objects, has an owner. Its owner can manipulate and use any

object in the schema, even the objects created by others users in that schema.

To manipulate objects in a schema from another user, a user needs DDL

permissions. DDL permissions already existed in previous versions, but now they

are more fine-grained, like in these examples:

grant create table on schema SCHEMA1 to user USER1;

grant alter any procedure on schema SCHEMA1 to PUBLIC;

ON SCHEMA <name> clause is optional, and if not present, it is implicitly assumed

to be the current schema.

To use objects it was already necessary to have permissions like EXECUTE or

USAGE granted for the object. Now, in addition to that, it is necessary to have

granted the USAGE permission for the schema where the object is contained, like in

this example:

-- Connected as USER1

create schema SCHEMA1;

create table SCHEMA1.TABLE1 (ID integer);

grant usage on schema SCHEMA1 to user USER2;

grant select on table SCHEMA1.TABLE1 to user USER2;

40

The SYSTEM schema

All system schema-bound objects (RDB$ and MON$) are now created in a special

schema called SYSTEM. As the SYSTEM schema has a default USAGE permission

granted to PUBLIC and by default is present in the search path, its usage is

backward compatible with previous versions.

With the exception of index creation and manipulation of these created indexes,

the SYSTEM schema is locked for changes. However, it is not recommended to

manipulate objects there.

The PUBLIC schema

A schema called PUBLIC is automatically created in new databases, with a default

USAGE permission granted to PUBLIC. Only the database/schema owner has

default permissions to manipulate objects in that schema.

The PUBLIC schema is not a system object and it can even be dropped by the

database owner or by a user with DROP ANY SCHEMA permission. When restoring

a backup of Firebird >= 6 with gbak where the PUBLIC schema was not present,

the restored database will be created without it.

New statements and expressions

CREATE SCHEMA

{CREATE [IF NOT EXISTS] | CREATE OR ALTER | RECREATE} SCHEMA <schema name>

​ [DEFAULT CHARACTER SET <character set name>]

If DEFAULT CHARACTER SET is not specified, new schemas are created with the

default character set equal to the database default character set.

The default character set is fine-grained, so each schema can have a different

default character set. When previous Firebird versions used the default database

character set, now it uses the default schema character set of the contained object.

41

Different than the automatically created PUBLIC schema, the newly created

schema has USAGE permission granted only to its owner and not to PUBLIC.

Schema names INFORMATION_SCHEMA and DEFINITION_SCHEMA are reserved

and cannot be created.

ALTER SCHEMA

ALTER SCHEMA <schema name>

​ [SET DEFAULT CHARACTER SET <character set name>]

DROP SCHEMA

DROP SCHEMA [IF EXISTS] <schema name>

It is currently allowed to drop only empty schemas. In the future the CASCADE sub

clause will be added allowing to drop schema and all its contained objects.

CURRENT_SCHEMA

CURRENT_SCHEMA returns the first valid schema name present in the search path

of the current session. If there is none, it returns NULL.

SET SEARCH_PATH TO​

SET SEARCH_PATH TO <schema name> [, <schema name>]...

RDB$GET_CONTEXT

CURRENT_SCHEMA (SYSTEM)

RDB$GET_CONTEXT('SYSTEM', 'CURRENT_SCHEMA') returns the same

value as the CURRENT_SCHEMA expression.

42

SEARCH_PATH (SYSTEM)

RDB$GET_CONTEXT('SYSTEM', 'SEARCH_PATH') returns the current

session search path, including invalid schemas present in the list.

SCHEMA_NAME (DDL_TRIGGER)

RDB$GET_CONTEXT('DDL_TRIGGER', 'SCHEMA_NAME') returns the schema

name of the affected object in a DDL TRIGGER.

Monitoring

Monitoring tables has now these information related to schemas:

MON$ATTACHMENTS

MON$SEARCH_PATH: search path of the attachment

MON$TABLE_STATS

MON$SCHEMA_NAME: table schema

MON$CALL_STACK

MON$SCHEMA_NAME: routine schema

MON$COMPILED_STATEMENTS

MON$SCHEMA_NAME: routine schema

Queries

Field aliases can now be qualified not only with the table name, but with the

schema too, even in the case of implicit deduced schema name from the search

path. It is also possible to qualify table name with schema and use the column only

with the table name. For example:

create schema SCHEMA1;

create table SCHEMA1.TABLE1 (ID integer);

43

set search_path to SCHEMA1;

select TABLE1.ID from SCHEMA1.TABLE1;

select SCHEMA1.TABLE1.ID from TABLE1;

select SCHEMA1.TABLE1.ID from SCHEMA1.TABLE1;

If the same table name is used from different schemas, fields should be qualified

with the schema names or aliases:

create schema SCHEMA1;

create schema SCHEMA2;

create table SCHEMA1.TABLE1 (ID integer);

create table SCHEMA2.TABLE1 (ID integer);

select SCHEMA1.TABLE1.ID, SCHEMA2.TABLE1.ID from SCHEMA1.TABLE1,

SCHEMA2.TABLE1;

select S1.ID, S2.ID from SCHEMA1.TABLE1 S1, SCHEMA2.TABLE1 S2;

Plans

To be specified.

New DPB items

isc_dpb_search_path

isc_dpb_search_path is a string DPB (like isc_dpb_user_name) that sets

the initial schema search path.

Array support

isc_sdl_schema

When dealing with arrays using SDL (Array Slice Description Language), there is

now isc_sdl_schema to explicitly qualify the schema. Its format is the same as

used with isc_sdl_relation.

44

Utilities

isql​

Option -(SE)ARCH_PATH

This option makes ISQL pass the search path (as received by the OS) as

isc_dpb_search_path in every attachment stablished.

isql -search_path x,y t1.fdb

select RDB$GET_CONTEXT('SYSTEM', 'SEARCH_PATH') from system.rdb$database;

-- Result: "X", "Y"

set search_path to y;

select RDB$GET_CONTEXT('SYSTEM', 'SEARCH_PATH') from system.rdb$database;

-- Result: "Y"

connect 't2.fdb';

select RDB$GET_CONTEXT('SYSTEM', 'SEARCH_PATH') from system.rdb$database;

-- Result: "X", "Y"

isql -search_path '"x", "y"' t1.fdb

select RDB$GET_CONTEXT('SYSTEM', 'SEARCH_PATH') from system.rdb$database;

-- Result: "x", "y"

gbak

To use databases created in previous Firebird versions with Firebird 6, it is

necessary to restore a backup in the new version using the Firebird 6 gbak. The

restored database will have all users objects in the PUBLIC schema.

NOT DECIDED YET: Should we add an option to give customized name to the

PUBLIC schema?

System metadata changes

The following fields were added to system tables. It is important that applications

and tools that read metadata starts to use them when appropriate, for example

considering RDB$SCHEMA_NAME when joining the tables.

45

Table: Column(s)

MON$ATTACHMENTS: MON$SEARCH_PATH

MON$CALL_STACK: MON$SCHEMA_NAME

MON$COMPILED_STATEMENTS: MON$SCHEMA_NAME
MON$TABLE_STATS: MON$SCHEMA_NAME

RDB$CHARACTER_SETS: RDB$DEFAULT_COLLATE_SCHEMA_NAME,

RDB$SCHEMA_NAME

RDB$CHECK_CONSTRAINTS: RDB$SCHEMA_NAME

RDB$COLLATIONS: RDB$SCHEMA_NAME
RDB$DATABASE: RDB$CHARACTER_SET_SCHEMA_NAME

RDB$DEPENDENCIES: RDB$DEPENDED_ON_SCHEMA_NAME,

RDB$DEPENDENT_SCHEMA_NAME

RDB$EXCEPTIONS: RDB$SCHEMA_NAME

RDB$FIELDS: RDB$SCHEMA_NAME
RDB$FIELD_DIMENSIONS: RDB$SCHEMA_NAME

RDB$FUNCTIONS: RDB$SCHEMA_NAME

RDB$FUNCTION_ARGUMENTS: RDB$FIELD_SOURCE_SCHEMA_NAME,

RDB$RELATION_SCHEMA_NAME, RDB$SCHEMA_NAME

RDB$GENERATORS: RDB$SCHEMA_NAME
RDB$INDEX_SEGMENTS: RDB$SCHEMA_NAME

RDB$INDICES: RDB$FOREIGN_KEY_SCHEMA_NAME, RDB$SCHEMA_NAME

RDB$PACKAGES: RDB$SCHEMA_NAME

RDB$PROCEDURES: RDB$SCHEMA_NAME

RDB$PROCEDURE_PARAMETERS: RDB$FIELD_SOURCE_SCHEMA_NAME,
RDB$RELATION_SCHEMA_NAME, RDB$SCHEMA_NAME

RDB$PUBLICATION_TABLES: RDB$TABLE_SCHEMA_NAME

RDB$REF_CONSTRAINTS: RDB$CONST_SCHEMA_NAME_UQ, RDB$SCHEMA_NAME

RDB$RELATIONS: RDB$SCHEMA_NAME

RDB$RELATION_CONSTRAINTS: RDB$SCHEMA_NAME
RDB$RELATION_FIELDS: RDB$FIELD_SOURCE_SCHEMA_NAME, RDB$SCHEMA_NAME

RDB$SCHEMAS: RDB$CHARACTER_SET_NAME, RDB$CHARACTER_SET_SCHEMA_NAME,

RDB$DESCRIPTION, RDB$OWNER_NAME, RDB$SCHEMA_NAME,

RDB$SECURITY_CLASS, RDB$SYSTEM_FLAG

RDB$TRIGGERS: RDB$SCHEMA_NAME
RDB$TRIGGER_MESSAGES: RDB$SCHEMA_NAME

RDB$USER_PRIVILEGES: RDB$RELATION_SCHEMA_NAME, RDB$USER_SCHEMA_NAME

RDB$VIEW_RELATIONS: RDB$RELATION_SCHEMA_NAME, RDB$SCHEMA_NAME

46

Differences with previous versions

CREATE SCHEMA in IAttachment::executeCreateDatabase and
isc_create_database

It was possible to use CREATE SCHEMA using the APIs functions

IAttachment::executeCreateDatabase and isc_create_database to

create databases. Not this is not allowed. The only valid syntax is CREATE

DATABASE.

Object names in error messages

Object names present in error or informative messages are now qualified and

quoted in the parameters of the messages, even for DIALECT 1 databases. For

example:

SQL> create table TABLE1 (ID integer);

SQL> create table TABLE1 (ID integer);

Statement failed, SQLSTATE = 42S01

unsuccessful metadata update

-CREATE TABLE "PUBLIC"."TABLE1" failed

-Table "PUBLIC"."TABLE1" already exists

SQL> create schema "Weird ""Schema""";

SQL> create schema "Weird ""Schema""";

Statement failed, SQLSTATE = 42000

unsuccessful metadata update

-CREATE SCHEMA "Weird ""Schema""" failed

-Schema "Weird ""Schema""" already exists

Object name parsing outside SQL

When dealing with object names in isc_dpb_search_path, isc_sdl_schema

and MAKE_DBKEY, object names follow the same rules as when using in SQL,

requiring quotes for names with special or lower case characters. For

MAKE_DBKEY, unqualified names use the search path.

47

Previously, MAKE_DBKEY used exact table name inside its first parameter and do

not allowed usage of double-quotes for special characters.

Minimum page size

The minimal database page size was increased from 4096 to 8192 because the old

minimum was not enough to fit changes in system indexes.

Bult-in plugins

To be specified.

Downgrade compatibility

It’s expected that Firebird 6 databases not using multiple users schemas (for

example, a Firebird 5 database just migrated to Firebird 6 by gbak) would not be

always downgradable to previous Firebird versions using gbak.

The Firebird team will backport to Firebird 5 essential internal changes to make

that possible. This documentation will be updated when this is ready.

48

...

The Snowflake Database Feud​

One day, a Snowflake database strutted into the North Pole’s IT room, boasting
about its scalability and cloud-first design. Firebird, sitting quietly in the corner,
chuckled.

“Impressive,” Firebird said, “but can you deliver a seamless Christmas with
minimal hardware and decades of reliability?”

Snowflake stammered, “Well, I... uh, need an internet connection...”

Santa overheard and chimed in, “Firebird has never let us down. Christmas is
too important to trust the clouds alone!”

Firebird winked at Snowflake, saying, “Welcome to the North Pole. We’ve got
room for everyone, but some traditions never fail.”

49

Toolbox: IBQuery
The IBQuery​ from MiTec is a simple tool for working with InterBase/Firebird

databases on the Windows platform. It has been around since 2002, and has been

quite popular in its category due to its simplicity and user-friendly design.

IBQuery is a tool primarily intended for database administrators. In addition to

standard functions such as Database Object Explorer for metadata visualization,

SQL Editor for executing commands and scripts, it also offers specific

administrator functions such as User and Grant Manager, Event Watcher or

Performance Monitor. It is built in Delphi and uses IBX components to work with

Firebird. It’s distributed as single 7MB .zip file that contains 32-bit and 64-bit

executables, and language files for English, German, French, Spanish, Hungarian

and Czech localization.

IBQuery is free to use for private, educational and non-commercial purposes, and

for other usage you should buy commercial license. Also, some functionality is

available only in commercial version.

For this review, we used the latest commercial version 9.5.0, provided by MiTec.

50

https://www.mitec.cz/ibq.html

IBQuery features a no-frills, single-window layout that prioritizes functionality

and ease of use. The interface is divided into three main sections:

Collapsible panels on either side, which house the Object Explorer (left) and

Connection Manager (right).

A central workspace dedicated to tool windows, such as query editors and data

views.

A switching bar below the toolbar that lists open windows for easy navigation.

The design is utilitarian, which longtime users may appreciate, but it can feel dated

compared to the polished interfaces of contemporary database tools. However, its

simplicity ensures that new users can get up to speed quickly without needing

extensive documentation or training.

At startup, the right panel is displayed, initially empty on the first launch, showing

the defined connections.

51

...

Upon connecting to the database, the Database Object Explorer is displayed in a

standard tree structure. However, it lacks filtering and search capabilities, which

can make navigating databases with a large number of objects less efficient.

Selecting an object opens a dedicated working window that provides detailed

information about the selected item. For tables, a standard data view is available,

offering options for data modification, as well as export and import functionalities.

The data view, implemented as a standard Delphi dataset, has a minor drawback:

the transaction control icons only activate after data in the grid has been modified.

This makes it less convenient for inspecting data from monitoring tables, as their

contents cannot be easily refreshed. For monitoring tables, it is recommended to

use the SQL Editor, which does not have this limitation.

52

...

The object documentation panel offers an overview of key properties that are

otherwise spread across individual panels. It also provides access to the HTML

source code of a table. Unfortunately, this documentation is limited to individual

objects and does not extend to the entire database, object categories, or selected

groups of objects.

The SQL editor allows the execution of both individual commands and entire

scripts, offering two modes: one that generates query output and another for

running scripts without output.

While functional, the editor is very basic, lacking advanced features such as

command completion, even for object names. Syntax highlighting is also minimal,

which is disappointing given that both features are now standard in most modern

editors.

53

...

By default, query results are displayed as text output rather than in a grid, with the

grid view available as a separate function. This solution has its undeniable

advantages. Although detailed statistics are not displayed, essential information

such as the execution plan, execution time, and result retrieval time is provided.

Similar to ISQL, both row-by-row and column-by-column views are supported.

Additionally, results can be exported in various formats.

Regarding data handling, a significant limitation of IBQuery must be noted. Even
in its latest version, it does not natively support the new data types introduced in
Firebird 4. To work with these new types without encountering errors, users must
rely on the SET BIND command to configure data type coercion rules.

​Resources: ​IBQuery download​​

54

...

https://www.mitec.cz/ibq.html

Efficient SQL editing hinges on a robust command history function. In contrast to

many other tools, this feature exists independently as a commented text file. Users

can select specific commands within this file and transfer them to the editor with a

dedicated function. However, the history currently logs all executed commands

sequentially, irrespective of duplicates. This approach can diminish the history’s

clarity and usability.

In addition to the above, the free version also offers User and Grant Manager

functionality and access to some server Services. The User Manager uses the

Services interface, allowing only basic user management without more advanced

options available via SQL user-management commands. The Grant manager is

nice, but supports only standard privileges, and not new DDL ones. Supported

services include access to the server log, viewing basic server information, detailed

gstat statistics as plain text output, online validation, and the ability to shut down

the database for maintenance purposes and then make it online again.

55

...

56

...

...

The commercial version provides enhanced capabilities, including a Performance

Monitor, Event Watcher, Index Rebuilders, data import/export functionality, and a

script repository known as Codebase.

The Performance Monitor visualizes I/O statistics and memory usage over time

through intuitive trend graphs. It gathers data using lightweight info calls,

minimizing the performance impact on the server compared to systems that rely

on monitoring tables. However, this approach also restricts its scope, as it is limited

to data within a single database.

If you use event notifications, you will appreciate Event Watcher to verify that they

are working properly.

While the name might suggest otherwise, Index Rebuilder does not physically

rebuild indexes; instead, it efficiently updates their statistics, a crucial task for

maintaining optimal query performance.

57

...

Codebase serves as a straightforward repository for scripts, enabling users to edit

them within a basic editor and seamlessly transfer them to the SQL editor for

execution.

Export and import functions support CSV, XML, and binary RAW formats.

Summary

While IBQuery may not be suitable for demanding production environments or for

development of database applications, it remains a valuable tool for field

technicians. Its user-friendly interface makes it an efficient aid for minor

interventions and maintenance tasks performed directly at client sites.

The primary limitation of IBQuery is its lack of support for the newer data types

introduced in Firebird 4. However, it remains a viable option for those still working

with Firebird 3 or earlier versions.

58

...

The Festive Stored Procedure Cleanup​

Santa tasked the elves with reviewing old stored procedures in Firebird,
searching for bad code or outdated logic. With the help of Firebird's PSQL
profiler, they analyzed execution times and pinpointed several poorly written
procedures that were consuming unnecessary resources.

The team diligently optimized and consolidated these procedures, resulting in
significantly improved performance. Santa was delighted. “Even stored
procedures deserve a holiday cleanup!” he chuckled.

59

Answers to your questions
Documentation is said to be a collection of answers to unspoken questions. If you

ask a search engine, it will answer you with a link to a document that (hopefully)

contains the answer. There are documents, forums and entire systems like Stack

Overflow that consisting only of questions and answers. And now an army of AIs is

starting to chase us to answer our questions. Questions and answers cannot be

avoided, there is no hiding place.

However, amidst the sea of routine questions and responses, there lie truly

captivating inquiries and answers, like hidden treasures. Our commitment is to

regularly present you with a curated collection of these precious gems.

60

Firebird indices 101

Kjell Rilbe asked:

Apparently it’s not possible to deactivate a primary key index. Seems reasonable.

So, how do I rebuild it?​

Sean Leyne answers:

Why do you need to rebuild it?

Unlike user indexes, primary key indexes have a fixed selectivity which means that

they never become "unbalanced" — so they never need to be re-indexed.

Ann W. Harrison answers:

Sean, I agree with your conclusion, but have trouble with the reasons. Firebird

indexes do not get unbalanced at all. Selectivity has little or nothing to do with

index balance.

Primary key indexes - and unique indexes - do not suffer from bad selectivity

values because their selectivity is known a priori. Other indexes created on an

empty table will have incorrect selectivities after data is loaded and should at a

minimum have the selectivity set after a large load or other operation so the stored

selectivity matches the actual data.

Now for my contention that Firebird indexes don’t get unbalanced. The classic

Database 101 b-tree adds layers going downward so the path to one record from

the top of the tree is say 5 layers while the path to another record is 15 layers.

That’s why databases don’t use simple b-trees. In the description below, I’m

ignoring jump nodes which are important but not significant to the discussion.

A Firebird index starts as a single page containing pairs of values and record

identifiers. Eventually, someone wants to add another pair and it doesn’t fit on the

page. Firebird allocates a new page, copies half the pairs into the new page, then

allocates a second page with two entries, each consisting of a value, a record

identifier, and a page number. The page numbers are the original index page and

the new index page. The values and record numbers are the first pairs from the

lower pages. Then the system goes along, happily filling bottom level pages,

61

splitting them as necessary, and adding new pages to the top page. Eventually, the

top page fills, splits, and creates another top page with two entries, one for the first

half of the former top page and one for the second.

If you think about that for a second, you’ll realize that the length from the top to

every lowest level entry is exactly the same.

Oh, but what about deleted records. Won’t I have an unbalanced index if my key is

always increasing with time and I delete the old records. The answer is no, because

Firebird does almost exactly the reverse when pages get below 1/3 full - it

combines them and removes the pointer from the next level up. That turns out to

be very hard and has taken years of Vlad’s life to make work under load as pages

are added to and removed from indexes.

Kjell Rilbe wrote:

So, when IS it relevant to rebuild a Firebird index, which I understand happens

when an index is deactivated and then reactivated?

Ann W. Harrison answers:

Index pages are recombined when two adjacent pages are each less than (roughly)

30% full. Sorry, I don’t remember the exact number and am not going to look it up.

That reduces - but does not eliminate - the problem of releasing and index page

and instantly needing it back again because the recombined page will only be 60%

full. If you’ve got a table from which records are regularly deleted across the range

of the index, gstat may tell you that the index pages are less than 50% full on

average. That might be a reason to rebuild the index - unless you expect to create

new records with key values all across the range of the index.

In fact, the only reason I can think of for rebuilding an index is that you want a

better fill level - whether the source of the problem is deleted records or creating

the index before loading a large amount of data in random order relative to the

index.

And some people just like doing maintenance and sleep better knowing their

indexes have been scrubbed.

62

Kjell Rilbe wrote:

We’re preparing a database for an online system and have imported a large

amount of data. The DB file is currently 42 gigabyte. There are two tables with

over 110 million records and then some with about 1-2 million records. Most other

tables only have a few hundred or a few thousand records. No records are deleted.

Page size is 4096.

Now, after the batch import finishes, I assume the indexes could use with some

"conditioning". But what’s my best option?

1. Just set statistics on all of them?

2. Rebuild all indexes with deactivate/reactivate?

3. Do a backup/restore cycle with gbak?

4. Other options?

Would you handle indexes differently depending on selectivity? For example, the

"largest" table, with over 110 million records, has a primary key where key values

are incremental (not always +1, but always +something). Is it better to leave that

index without a rebuild?

Also, what considerations should I make regarding page size? Maybe I should bump

up the page size?

Downtime is no problem. More important is to maximize index and query

performance before the system is put online.

Ann W. Harrison answers:

​​If you had asked before you did the load, I would have said, import with indexes off,

then create the indexes.

Ad 1. Absolutely.

Ad 2. Will produce dense index pages - which may be good or bad, depending on

what you do next. If the database continues to grow significantly across all index

ranges, then having some space in the index reduces future splits. If you’ve got

most of the data you expect to have, maximize packing density to reduce the

number of index reads.

63

Ad 3. Overkill.

Ad 4. Don’t activate the indexes until the data is stored.

The normal index loading does have an optimization when the page to be split is

the last one in the index. Normally, a split puts half the data in each page. If the split

is the last page in the index, the new page has only the record that didn’t fit. That

means that if you load in key order, the index will be created dense.

About page size, it depends on how deep are your indexes.

Kjell Rilbe wrote:

Seems that on the largest table, they all have depth 4. Are there any figures in this

report that would warrant a config change or anything, e.g. different page size?

Ann W. Harrison answers:

Yes, I’d double the page size. Every new index access reads the full depth of the

index tree, so a four level index is going to be slower than a three level index. With

luck, a range retrieval will read across the bottom of the index, but if it conflicts

with an index update, it starts again from the top.

Looking at a couple of indexes:

Analyzing database pages ...

Uppgift (567)

 Index IX_PK_Uppgift (0)

​ Depth: 4, leaf buckets: 588728, nodes: 131418408

​ Average data length: 5.08, total dup: 0, max dup: 0

​ Fill distribution:

​ 0 - 19% = 2968

​ 20 - 39% = 15

​ 40 - 59% = 279494

​ 60 - 79% = 185021

​ 80 - 99% = 121230

Hmm. That one could certainly be more dense. Is it possible to sort your input data

by primary key before you store it? In case it’s not clear to everybody a "leaf

bucket" is a bottom level index page. Index pages are called buckets for reasons

lost in the mists of time. And index trees have the leaves on the bottom. "Old

Frothingslosh, the pale stale ale with the foam on the bottom". Maybe I need less

64

coffee.

Index IX_Uppgift_BorttagsuppA5K (8)

​ Depth: 4, leaf buckets: 253733, nodes: 136466214

​ Average data length: 0.00, total dup: 136444473, max dup: 119722141

​ Fill distribution:

​ 0 - 19% = 127

​ 20 - 39% = 7685

​ 40 - 59% = 131314

​ 60 - 79% = 28000

​ 80 - 99% = 86607

And this one …​ hmm again. Once again, medium fill level, but here the average data

length is zero to two decimal places. Which is good, but suggests lots of duplicates.

nodes: 136,466,214 <- that's the number of entries in the index

total dup: 136,444,473 <- that's the number that are identical

max dup: 119,722,141 <- that's the longest chain of a single value.

Amazing that it works at all. Do you know which value has 119 million instances? It

was less than 10 years ago when gstat changed its accumulators from 16 to 32 bits.

Index IX_Uppgift_Till├ñggsuppYNC (9)

​ Depth: 4, leaf buckets: 196830, nodes: 131804550

​ Average data length: 0.02, total dup: 131766961, max dup: 11251

​ Fill distribution:

​ 0 - 19% = 9

​ 20 - 39% = 1

​ 40 - 59% = 3217

​ 60 - 79% = 44

​ 80 - 99% = 193559

This index looks pretty good. Yes there are a lot of duplicates, but they’re

distributed pretty evenly.

Sergio asked:

Hello, I’ve been reading this FAQ and I undestand that having an index on a

boolean field is the worst of the cases. But I’ve also seen that if you have (as in my

case) very little "active" records (MyBoolean = 1) and a LOT of inactive records, is

good to have an index to select the active records.

65

Is that True? Should I create an index on my boolean field?

My paricular case is a calendar with events in some days. I need to select the

pending events. They will be always, lets say, less than 100, while the table, as the

the years pass will grow a lot with the old (not pending) events…​

Ann W. Harrison answers:

In very early versions of Firebird, an index like that would have caused enormous

problems during garbage collection. Now there’s an algorithm that makes cleaning

out old duplicate entries fast enough.

An index will improve performance when you’re looking for the 1% of the records

that are not like the rest, if you can convince the optimizer to use it. The optimizer

may be smart enough to ignore indexes with terrible selectivity, in which case you

may need to add a plan to force use of the index. But if you accidentally run a query

that looks for the 99% of records that all have the same value (and the optimizer

chooses to use that index) you’ll get poor performance. You can avoid that by

adding a nonsense OR clause - (pending = 0 OR 1 = 2) - that will cause the

optimizer to ignore the index.

Besides, adding and dropping an index is pretty trivial. Try it, if you like it, keep it,

otherwise get rid of it.

Why is CommitRetaining bad?

rodrigogoncalves asked:

What I don’t understand is why there is a performance issue when an

CommitRetaining is applied. Since the comands related to the transaction won’t be

"rollbacked" anymore, other transaction have no interest on this one anymore, so

they should not have a performance impact.

Ann W.Harrison answers:

The problem is that a commit retaining starts a new transaction that keeps the

same context as the one that was "commit retained". From the point of view of

garbage collection, it’s as if that transaction were still running, and it block

66

garbage collection at the state when the original transaction started.​

Pavel Císař adds:

The RETAINING option for commit and rollback was introduced in InterBase 4.0 to

address a specific technical challenge faced by Borland. To understand its purpose,

some historical context is necessary.

The early 1990s were a golden era for Borland, still under the leadership of its

founder and CEO, Philippe Kahn. Among Borland’s top products were the

legendary Turbo Pascal and development tools for other languages. Another key

product was the Paradox database. In 1991, Borland acquired Ashton-Tate,

bringing dBase and InterBase (which was bought by Ashton-Tate early before) into

its portfolio. This acquisition was part of "brilliant" Borland​ strategy: to leverage all

its assets by creating a RAD tool for rapid application development that could

seamlessly work with dBase, Paradox, or InterBase.

A critical piece of this puzzle was the Borland Database Engine (BDE), which

provided a unified API for accessing dBase, Paradox, and InterBase. The BDE was

first introduced in 1992, bundled with Borland Pascal 7.0 and Paradox for

Windows. However, this initial release was primarily a proof of concept. The real

game-changer was the "VBK" project, which began in late 1993 and was later

renamed Delphi.

When the Delphi team integrated the BDE with InterBase, they encountered a

significant challenge. Unlike file-based databases like dBase or Paradox, InterBase

required transactions to manage data access. In InterBase, closing a transaction

also closed all associated cursors. This behavior caused a major issue: closing a

transaction would immediately disconnect data-aware components from their

underlying data, effectively "losing" their state.

To address this, the InterBase team was tasked with finding a solution to allow

cursors to persist across transaction boundaries. Their solution was the

RETAINING option, introduced with InterBase 4.0, released in 1994.

When Delphi 1.0 launched in 1995, it included a free single-user license for

InterBase 4, encouraging developers to adopt InterBase for their projects. At first,

it was all "rainbow and unicorns", until they discovered that their applications do

not scale. Applications that worked flawlessly in single-user or test environments

67

began to fail catastrophically in production, especially for larger deployments. The

RETAINING option, while solving the cursor persistence issue, introduced side

effects like bloated transaction metadata and stalled garbage collection, which

degraded performance over time.

The issue was eventually addressed with the introduction of the IBX (InterBase

Express) component library, shipped with Delphi 5 in August 1999. Around the

same time, Borland began deprecating the BDE, officially replacing it with

dbExpress in the early 2000s.

The final history lesson is this:

RETAINING is suitable for single-user applications using Firebird Embedded,

provided the application is closed at the end of the day. However, it should never

be used in multi-user server environments, as it can severely compromise

scalability and performance.

68

...

The Power of CTEs​

The elves needed to calculate the total production time for each toy, including
its components. Elf Mathy used a common table expression (CTE) to build a
recursive query that traversed the "ToyComponents" hierarchy.

With Firebird’s CTEs, Mathy generated the report in record time. Santa
marveled, “It’s like following the star on a Christmas tree—all paths lead to the
top!”

The Window to Santa’s Metrics​

Santa wanted to see which toys were most popular, grouped by country and
ranked by request counts. Elf Analyst used Firebird’s window functions to
create a report that included rankings, cumulative totals, and averages—all in
one query.

The results helped Santa prioritize toy production for each region. “Window
functions give me a whole new perspective!” Santa said, already planning next
year’s analytics.

69

Planet Firebird
In this new regular section, we will summarize recent activities and initiatives
within the Firebird database community. This will include coverage of events,
news, achievements, and notable community projects from the past quarter.
Additionally, we’ll highlight plans and opportunities for involvement in the
upcoming period, such as conferences, meetups, and collaborative efforts
within the Firebird ecosystem. This section will keep you informed about
ongoing work both within and outside the Firebird project.

We encourage you to support this effort by sharing information about any
relevant events, achievements, projects, or any other activities that you believe
should be highlighted—whether they have already taken place or are planned
for the future. Your input will help us to keep the community connected and
informed.

You can reach us at either the "emberwings" or "foundation" @firebirdsql.org
email addresses.

70

The Rebirth of the Firebird Foundation

The Firebird Foundation has recently undergone a significant transformation,

marking the end of more than two decades of operations from Australia. A new

version of the Foundation, based in the Czech Republic within the European Union,

has been established. The goal of this shift was to strengthen the foundation’s

connection to Project Firebird and provide a more efficient and targeted approach

to supporting its development.

The new Firebird Foundation’s position allows us to offer more valuable and

tailored support to Firebird users and contributors. Because stable funding is

essential for the continued development of Firebird, regular financial

contributions play a key role in moving the project forward. That’s why the

Foundation now offers affordable subscription plans for individuals and

businesses, with benefits that vary by contribution level. These include early

access to EmberWings, partner discounts, exclusive webinars, exclusive technical

content or participation in release planning. High-level sponsors can enjoy even

greater perks, including priority access and personalized recognition. This new

structure allows the Foundation to offer more meaningful, long-term value to its

supporters, ensuring Firebird’s continued success and innovation.

With the new organization, we aim to adopt a much more proactive approach, far

surpassing the level of activity seen in recent years. Our goal is to open the project

up more substantially to the user community, strengthening and deepening mutual

connections that have somewhat diminished due to the lack of regular

international conferences.

Unfortunately, the reorganization has also brought some confusion and mistakes.

We hope you will continue to support us despite these temporary challenges and

imperfections. We have ambitious plans to implement over the next year, and we

would greatly appreciate your help by providing valuable feedback to guide our

efforts.

You can already provide feedback on this magazine and share your preferences for

organizing webinars. Additionally, we are working to map the needs and challenges

of Firebird users, allowing the Firebird Project to better focus its resources and

71

​enabling​ ​the Foundation to invest where it is most needed.

Links to the relevant questionnaires can be found at the end of this issue. They will

also appear later on our website, which will undergo renovation over the next year.

Firebird at ITDevCon 2024

ITDevCon is Europe’s leading conference on Delphi and related technologies. The

13th edition took place on November 14–15 at the Time Group headquarters in

Rome. Among sessions valuable for Firebird users—such as those on integrating

Delphi with databases, using RESTful APIs, and interfacing with external services—

was a standout session titled "Firebird Goes Mobile," presented by Firebird

Foundation member Fabio Codebue. With 40 attendees, Fabio reported a buzzing

atmosphere, highlighting the strong interest in mobile databases.

This interest is understandable, as Firebird faces little competition in the mobile

database space, presenting a unique opportunity to lead this market. The project is

now exploring ways to expand its mobile focus to include iOS alongside Android.

Additionally, enhancing documentation and offering practical examples for

development environments like Delphi, Ionic, and React are priorities.

If you are interested in mobile development, now is the perfect time to partner

with the Foundation and support these exciting advancements.

First Firebird Certified Professionals

The Firebird Foundation has begun implementing its certification programs for

application developers and database administrators. While an online demo exam

has been available for administrators for some time, November 22 marked a

significant milestone: eight professionals successfully passed the Firebird Basic

DBA exam in São Paulo, Brazil, completing the first official certification.

A special congratulations goes to Alcides Magno Baptista Moreira de Deus, who

earned certificate number 0001 with a perfect 100% score and was the first to

finish the exam—a remarkable achievement!

72

The Foundation will soon introduce online exams and announce the next steps in

the Firebird Certification program. To learn more about these certifications, visit

our website​.

A Festive Countdown to a Milestone Year

The holiday season is here, and Firebird is inviting everyone to partake in a unique

countdown that promises to bring warmth, joy, and community spirit to winter

days. The Firebird Advent Calendar is not just a celebration of the season—it’s a

lead-up to Firebird’s momentous 25th Anniversary in 2025.

Each day of December, a new door on the calendar reveals exciting content,

surprises, and engaging activities that highlight the essence of Firebird. From

nostalgic reflections on the past to thrilling glimpses into the future, this calendar

celebrates the collaboration and innovation that have defined the Firebird journey.

But don’t worry if you’re late to the party—this special advent calendar will remain

open for exploration until the end of January 2025. This extended availability

ensures that everyone has a chance to dive into the festive fun and be part of this

community celebration.

So, grab a cup of cocoa, and join the countdown as we honor the past and eagerly

anticipate an incredible year ahead for Firebird. Together, let’s make this season

and the journey to the 25th Anniversary unforgettable.

Don’t miss a single day—your next surprise is just a click away!

The calendar is available on the Firebird website, or you can click the button below

to access the full-page version directly.

Visit Advent Calendar

73

https://firebirdsql.org/en/certification/
https://app.myadvent.net/calendar?id=hx4zy4206tab9opvjiloxp9k7b6tg9rp

The Elves' Secret Santa​

In Santa's bustling North Pole office, the elves were wrapping up their annual Secret Santa
gift exchange. Clara, one of the tech-savvy elves who managed the Naughty-or-Nice
database, eagerly pulled her gift from the pile.

“Let’s see if Firebird got me something good this year,” Clara joked as she untied the festive
ribbon.

Her coworker David raised an eyebrow. “Firebird? Pretty sure it’s not one of the elves, Clara.”

Clara laughed. “Maybe not, but it handles everything else for us—naughty lists, toy
inventories, even sleigh logistics. It’s fast and reliable, so why not gift-giving too?”

The other elves chuckled, shaking their heads at Clara’s unwavering faith in the North Pole’s
favorite database engine.

Inside the box, Clara found a shiny new USB drive, engraved with a tiny firebird emblem.
Attached was a note that read:

“For the times you need something small but powerful—just like me. Merry Christmas!”

Clara held up the gift with a grin. “Looks like Firebird really was my Secret Santa!”

The workshop erupted in laughter and cheers, and from that day on, the elves affectionately
nicknamed their database engine “Santa’s Little Helper.”

74

Notes on the effect of using ALTER INDEX
By Paul Reeves (IBPhoenix)

The documentation for ALTER INDEX …​ [IN]ACTIVE is somewhat

ambiguous. At first sight it appears to be obvious - you would use it to activate
or de-activate an index. A switch to turn them on or off. De-activating an index
can be useful, especially during bulk insert operations. It could also be useful
for deactivating indexes with very little selectivity. Such indexes are usually
created by foreign keys and they are surprisingly common, require additional
page writes to maintain and can never be used in any useful sense. If only
there was a way to turn them off! And then the documentation states quite
clearly that you can’t de-activate indexes that are created by constraints.
Hmmm…​ the command is suddenly not that useful after all. At this point most
users will just shrug and move on. This is not the solution they were looking
for. Dropping constraints just to de-active a bunch of indexes is way too
complicated.

But hidden in the documentation for ALTER INDEX …​ ACTIVE is a little

nugget. It says executing the command will rebuild the index. That is right -

75

REBUILD it. It does not say that an index must be INactive in order to activate. And

with no mention whether indexes created by constraints are excluded or not. So,

what is going on here? Does using ALTER INDEX …​ ACTIVE on any already

active index really rebuild it?

Why would you want to rebuild an index?

When a database is restored it recreates each index precisely based on the existing

data. Each index page has space for changes, in the same way that tables are filled

to 80% so are indexes. This is a reasonable compromise. Pages are reasonably well

packed and can still accommodate some changes by writing to existing pages. But

when a table sees many inserts, updates and deletes to records then holes start

appearing, both in the data pages and in the index pages.

When a table is freshly restored retrieving a record should take around 4 page

reads if the index has a depth of three. Unless the index depth changes retrieving a

single record will always take 4 page reads. In a table with millions of records and

thousands of data pages this is a win. And when pages are well packed an attempt

to retrieve, say, 100 records will immediately benefit from this as many of the

records in the set will already be in fetched pages. As holes start to appear in pages

then obviously more pages need to be read to retrieve the data.

To take a hypothetical example, if most of the index pages are now half full then

approximately twice many pages will need to be read in order to retrieve the

hypothetical 100 rows. In theory ALTER INDEX …​ ACTIVE will rebuild the

indexes and performance should return to something similar to the state after the

last backup/restore cycle.

Well, that’s the theory. Does it work on all indexes, built by a constraint or

otherwise? How long does it take? And is performance better afterwards? Let’s

see.

76

The test database

The test database is just a simple table with a primary key, a foreign key and some

indexes on two data columns.

create table lookup_colour(ID D_INTEGER, COLOUR varchar(12),

​ constraint pk_lookup_colour PRIMARY KEY (ID)

);

create table test_indexes (id D_INTEGER, col_id D_INTEGER,

​ txt D_GUID, txt2 D_GUID_TEXT, constraint pk_test_pk primary key (id)

);

commit;

create unique index test_uq_idx on test_indexes(id);

create index test_nonuq_idx on test_indexes(id);

create index test_nonfk_idx on test_indexes(col_id);

create asc index test_txt_idx on test_indexes(txt);

create desc index test_txt__desc_idx on test_indexes(txt);

create unique asc index test_txt2_idx on test_indexes(txt2)

​ where txt2 is not null;

create unique desc index test_txt2_desc_idx on test_indexes(txt2)

​ where txt2 is not null;

alter table test_indexes add constraint fk_lkp_col

​ foreign key (col_id) references lookup_colour (id);

commit;

The tests

10 million rows were inserted in blocks of one million rows. After each insertion

block 10% of the table was randomly selected for update and then another 10%

was randomly selected for deletion. The final test database had around 7 million

rows in the test table.​

For these tests background garbage collection was turned off.

These tests were carried out using Firebird 5.0.1 SuperServer on Linux. The behaviour of

earlier versions will be slightly different but the overall results will be similar.

77

Result of setting FK_LKP_COL active

To start with let’s look at what happens when we run ALTER INDEX …​ ACTIVE

on a single index. For this test FK_LKP_COL was chosen.

Here is the gstat output from before and after the index was rebuilt.

Leaf buckets (the actual pages storing index values) have almost been halved. ✅​
Index pages are repacked to high density ✅​

Result of setting rebuilding ALL of the indexes

From the above it looks as if rebuilding a single index will improve performance

where that index is used. What happens when we rebuild all the indexes?

BEFORE ACTIVATE

TEST_INDEXES (129)

 Index FK_LKP_COL (8)

Root page: 25240, depth: 3,

​ leaf buckets: 10053

​ nodes: 9274374

Average node length: 4.99,

 ​total dup: 9274364,

​ max dup: 928845

Average key length: 2.00,

 ​compression ratio: 0.90

Average prefix length: 1.80,

 ​average data length: 0.00

Clustering factor: 951868,

​ ratio: 0.10

Fill distribution:

​ 0 - 19% = 0

​ 20 - 39% = 0

​ 40 - 59% = 9446

​ 60 - 79% = 7

​ 80 - 99% = 600

AFTER ACTIVATE

TEST_INDEXES (129)

 Index FK_LKP_COL (8)

Root page: 25062, depth: 3,

 leaf buckets: 5727 <--

 nodes: 9274374

Average node length: 4.99,

 total dup: 9274364,

 max dup: 928845

Average key length: 2.00,

 compression ratio: 0.90

Average prefix length: 1.80,

 average data length: 0.00

Clustering factor: 951868,

 ratio: 0.10

Fill distribution:

 0 - 19% = 0

 20 - 39% = 0

 40 - 59% = 0

 60 - 79% = 0

 80 - 99% = 5727 <--

78

We will start by taking a look at the primary key index.

Number of pages (leaf buckets) in the index have now been reduced by ~25% ✅​

Number of index entries (nodes) now reflects the actual number of records in the
table. ✅​

Index pages have been cleaned up with more nodes stored per page. ✅​

What happens to the other indexes ? The effect upon the other indexes is similar.

By way of example we will look at TEST_TXT_IDX in detail.​

BEFORE ACTIVATE

Index PK_TEST_PK (0)

Root page: 24634, depth: 3,

 ​leaf buckets: 7784

​nodes: 9274374

​Average node length: 6.03,

​ total dup: 0, max dup: 0

Average key length: 3.04,

​ compression ratio: 1.52

Average prefix length: 3.60,

​ average data length: 1.02

Clustering factor: 214796,

​ ratio: 0.02

Fill distribution:

 0 - 19% = 1

 20 - 39% = 0

 40 - 59% = 517

 60 - 79% = 1590

 80 - 99% = 5676

AFTER ACTIVATE

Index PK_TEST_PK (0)

Root page: 23906, depth: 3,

 leaf buckets: 5414 <--

 nodes: 7114411 <--

Average node length: 6.14,

 total dup: 0, max dup: 0

Average key length: 3.15,

 compression ratio: 1.48

Average prefix length: 3.59,

 average data length: 1.07

Clustering factor: 210009,

 ratio: 0.03

Fill distribution:

 0 - 19% = 1

 20 - 39% = 0

 40 - 59% = 0

 60 - 79% = 0

 80 - 99% = 5413 <--

Root page: 2334, depth: 3,

 leaf buckets: 32806

​ nodes: 9274374

​Average prefix length: 2.22,

​ average data length: 13.78

Clustering factor: 9274272,

​ ratio: 1.00

Fill distribution:

 0 - 19% = 121

 20 - 39% = 0

 40 - 59% = 9226

​ 60 - 79% = 16146

 80 - 99% = 7313

Root page: 2310, depth: 3

 leaf buckets: 17504 <--

 nodes: 7114411 <--

Average prefix length: 2.17,

 average data length: 13.82

Clustering factor:​ 7114331,

 ratio: 1.00

Fill distribution:

 0 - 19% = 1

 20 - 39% = 0

 40 - 59% = 0

 60 - 79% = 0

 80 - 99% = 17503 <--

79

There is no need to examine the effect of rebuilding the other indexes. In all case

they exhibited similar results to the above.

Now that the indexes have all been rebuilt, let’s take a look at the data pages to see

the effect of rebuilding all indexes on the data storage of the table itself.

The total number of records stored is now correct at the data page level. ✅​

Back record versions have been cleaned out ✅​

Average page fill is significantly worse ❌​

Fill distribution is also worse ❌​

BEFORE

TEST_INDEXES (129)

​Primary pointer page: 234,

​Index root page: 235

Total formats: 1, used formats: 1

Average record length: 33.41,

​ total records: 9274374

Average version length: 44.76

​ total versions: 2159963

​Average fragment length: 34.00

​ total fragments: 36809

​Average unpacked length: 172.00

​ compression ratio: 5.15

​Pointer pages: 60,

​ data page slots: 96384

​Data pages: 96384,

​ average fill: 77%

​Primary pages: 95191,

​ secondary pages: 1193

​ swept pages: 0

​Empty pages: 0,

​ full pages: 89851

​Fill distribution:

 0 - 19% = 0

20 - 39% = 58

40 - 59% = 688

​ 60 - 79% = 39157

​ 80 - 99% = 56481​

AFTER

TEST_INDEXES (129)

Primary pointer page: 234,

Index root page: 235

Total formats: 1, used formats: 1

Average record length: 40.82,

 total records: 7114411 <--

Average version length: 0.00

 total versions: 0, <--

Average fragment length: 34.00

 total fragments: 36809

Average unpacked length: 172.00

 compression ratio: 4.21

Pointer pages: 60,

 data page slots: 95840

Data pages: 95728,

 average fill: 54% <--

Primary pages: 95191,

 secondary pages: 537

 swept pages: 0

Empty pages: 12,

 full pages: 28467

Fill distribution:

 0 - 19% = 14

20 - 39% = 859

40 - 59% = 61081 <--

60 - 79% = 33774

 80 - 99% = 0

80

Overall data page storage is better. And while page fill appears to have

deteriorated the reality is that these pages stored back record versions of rows

that had either been updated or deleted. So it was inaccessible to new transactions

anyway. And now that the data pages have been cleaned up this space is now

available for re-use. But this does indicate that we should be wary of the page fill

statistics.

What about rebuilding indexes for a table that is in use?

Let’s try two tests:

1. Table with an active (uncommitted) select

2. Table with active deletes

Table with an active (uncommitted) select

Executing this statement:

select r.ID, r.COL_ID, r.TXT from TEST_INDEXES r

join LOOKUP_COLOUR c on r.COL_ID = c.id

where c.colour = 'White'

order by r.ID

rows 1 to 10

and subsequently executing ALTER INDEX FB_LKP_COL ACTIVE worked fine,

so active selects do not appear to block rebuilding indexes.

Table with active deletes

Running this query:

execute block

as

declare anum D_INTEGER;

begin

​ execute procedure populate_pk_list (0, 9999);

​ for select pk_list_id from pk_list into :anum do

​ delete from test_indexes where id = :anum;

end ^

81

Statement prepared (elapsed time: 0.012s).

-- line 12, column 5

PLAN (TEST_INDEXES INDEX (PK_TEST_PK))

-- line 7, column 3

PLAN (PK_LIST NATURAL)

Executing statement...

Statement executed (elapsed time: 2.217s).

7505801 fetches, 1830 marks, 96397 reads, 6 writes.

711 inserts, 0 updates, 370 deletes, 481 index, 7115125 seq.

Delta memory: 412688 bytes.

TEST_INDEXES: 370 deletes.

PK_LIST: 711 inserts.

0 rows affected directly.

Total execution time: 2.267s

Script execution finished.

produces some minor changes to the data pages of the table:

Now let’s see if we can rebuild the index for FK_LKP_COL:

Starting transaction...

Preparing statement: ALTER INDEX FK_LKP_COL ACTIVE

Statement prepared (elapsed time: 0.000s).

Plan not available.

Executing statement...

Statement executed (elapsed time: 0.000s).

29 fetches, 2 marks, 9 reads, 0 writes.

0 inserts, 1 updates, 0 deletes, 5 index, 0 seq.

Delta memory: 55408 bytes.

RDB$INDICES: 1 updates.

Total execution time: 0.027s

Script execution finished.

All looking good, so far. Now let’s commit the transaction.

SQL Message : -901

Unsuccessful execution caused by system error

Engine Code : 335544345

Engine Message :

lock conflict on no wait transaction

unsuccessful metadata update

82

Oops.

It is clear that ALTER INDEXES …​ ACTIVE does not work on tables that are

actively being changed. This is obvious really but it is worth bearing in mind. The

command needs to take an exclusive lock on the table.

And how about performance?

We have established that rebuilding indexes improves the page storage of data
pages and index pages but does performance actually improve? Let’s see…​

We executed this query on a table with seven million records:

select r.ID, r.COL_ID, r.TXT, r.TXT2

from TEST_INDEXES r

where TXT starting with x'aa' || x'aa'

--where TXT starting with x'aa'||x'aa'

and r.TXT2 is not null;

and it returned twelve rows.

Execution time halved. ✅​

Page reads from disc more than halved. ✅​

Page fetches from cache more than halved. ✅​

BEFORE REBUILD

Current memory = 53128800

Delta memory = 156672

Max memory = 53194240

Elapsed time = 0.165 sec

​ Cpu = 0.000 sec

Buffers = 6000

Reads = 16271

​Writes = 0

Fetches = 16503

AFTER REBUILD

Current memory = 57003328

Delta memory = 22864

Max memory = 147186672

Elapsed time = 0.083 sec <--

 Cpu = 0.000 sec

Buffers = 6000

Reads = 7723 <--

Writes = 0

Fetches = 7775 <--

83

Summary

As data is changed indexes become unbalanced leading to poor density of index
pages. An unbalanced index will require more page reads in order to retrieve a
records.

It is clear that ALTER INDEX …​ ACTIVE will rebuild the index whether it was
created by a constraint or not.

It is also clear that ALTER INDEX …​ ACTIVE must be executed for all indexes in a
table in order to fully gain its benefits.

Performance will improve.

There is an overhead to execution of ALTER INDEX …​ ACTIVE however. The
first execution takes the longest if there is any garbage in the table. Subsequent
executions to rebuild other indexes on the table complete far more quickly.

Indexes cannot be rebuilt if data in the table is being changed.

It is probable that the entire database needs to be put into single user maintenance
mode in order to rebuild all the indexes. This is probably faster and easier than
trying to gain exclusive locks, table by table.

The cost of putting the database into maintenance mode for this operation will
require downtime, however this will be cheaper than a full backup/restore cycle.
On the other hand, it is less effective than backup/restore at optimally filling pages.
And neither does it recover lost pages.

If there is a large amount of garbage in the table, it still makes sense to first
DEACTIVATE indexes that can be deactivated to avoid unnecessary cleaning
during activation, and use ACTIVATE only on indexes that are part of the
constraint.​​

Conclusion

Rebuilding indexes can be a definite win for performance if…​

The database is very large
The database sees many changes.
The backup/restore cycle is longer than the time required to rebuild indexes.

84

...And now for something completely different

Finn and the Twelve

Once upon a time in a large corporation, a young administrator named Finn joined

the IT department. Eager and dedicated, Finn was appointed to manage the

company’s Firebird database server. But he quickly discovered that the system was

outdated and riddled with issues after years of neglect. Upper and middle

management didn’t care for the database or its inner workings; they saw it only as

a tool to serve their needs.

Frustrations over the Firebird server’s performance grew, and management

turned their gaze toward Finn. They demanded he deliver impossible

improvements, setting him up as a scapegoat for the database’s failings. One cold

Monday morning, the CTO, a ruthless and impatient man, summoned Finn to his

office.

“Finn, by the end of the week, you need to make this server run three times faster

and deploy real-time reporting!” barked the CTO. “Do it, or you’ll be out the door.”

85

Finn tried to explain that such a transformation would take months, but the CTO

dismissed his pleas, demanding immediate results.

Returning to his desk, Finn felt the weight of an impossible task. He poured over

technical articles and old manuals, but they seemed written in another language.

Desperate, he decided to reach out to the Firebird community, where developers

and administrators alike shared their knowledge.

As he posted his questions, he noticed responses trickling in from mysterious

accounts with nickname like January, February, March, and so on. Each response

carried invaluable advice. As Finn read on, he realized he wasn’t speaking to

regular users—he was in touch with the legendary Twelve. These were figures who

had shaped Firebird from the beginning, each with specialized knowledge. They

were the keepers of wisdom within the Firebird Project, and Finn was fortunate to

be receiving their help.

January was the first to reply: “Finn, start by rebuilding the indices and examining

the statistics. The basics are your foundation.” Following January’s guidance, Finn

made adjustments that immediately improved performance.

Next, February shared insights into managing transactions to keep the database

efficient under high load. Finn followed his advice, and the system became more

responsive.

Over the next days, others chimed in. March, an expert in memory management,

guided Finn through tuning cache settings. April introduced clever techniques that

allowed him to monitor the system without creating bottlenecks.

As the week wore on, Finn’s understanding grew with each piece of wisdom. May
taught him about effective backup and replication, essential for resilience. June
offered guidance on data security and access permissions, while July showed him

ways to streamline code through stored procedures and triggers.

The database was transforming before his eyes. By midweek, August helped Finn

make sense of query execution plans, while September shared advanced indexing

strategies that brought a whole new level of optimization. October provided

insights into Firebird’s inner workings, helping Finn connect the dots between

each concept he’d learned.

86

Finally, November, a respected figure in the community, hinted at a special setting​

hidden within Firebird’s configuration file. “Look closely, follow the leads, and you

might find an option that could unlock performance beyond standard

configurations,” he said cryptically. “Firebird holds secrets known only to those

who delve deeply. Use them wisely, and always keep backup plans ready.”

At last, December, the most experienced of the Twelve, offered a final message:

“Remember, Firebird rewards those who respect its strengths and limitations.

Mastery comes through understanding, not force. Now, go and let your knowledge

carry the system forward.”

By the end of the week, Finn had transformed the database. When the CTO

reviewed the server’s performance, he was astounded. “I don’t know how you

managed this, but you’ve saved us from embarrassment,” he admitted grudgingly.

However, his praise was short-lived. “But Finn,” he added, narrowing his eyes, “this

level of performance is our new standard. I expect even better results next quarter

—or we’ll find someone else who can keep up.”

Exhausted but undeterred, Finn returned to his desk. He knew the Firebird

community—and the Twelve who had guided him—would always be there, ready to

help those in need. Just then, he noticed a final message from December appear on

his screen:

“Firebird is like the seasons, ever-reliable and full of renewal. Those who respect it

will always find its hidden strengths. Use what you’ve learned wisely.”

And with that, Finn continued his journey, a humble yet skilled keeper of Firebird’s

secrets, knowing he would never face his challenges alone.

87

The official quarterly magazine of the Firebird Project​​

Do you develop with Firebird?
Are you using Firebird as a database backend for your applications? Share
your experience and help shape its future! Your insights on how you
develop with Firebird, the tools you rely on, and your wishlist for
improvements will directly impact its development. The survey takes just
5-10 minutes—join us in building a better Firebird!

Take the Developer Experience survey

Do you manage Firebird deployment?
Your insights as a Firebird administrator are invaluable! By taking just a few
minutes to complete this survey, you'll help shape the future of Firebird,
identify key challenges, and improve the tools and features you use every
day.

Participate in the Admin survey

We value your opinion! Help us improve EmberWings magazine by
sharing your thoughts and feedback. Our quick questionnaire will only
take a few minutes, and your responses will guide us in making future
issues more relevant, engaging, and valuable to the Firebird community.

Help us improve EmberWings!

Published by Firebird Foundation z.s. ©​ 2024​

...

https://forms.gle/WuR1oLFzsgGbSjRe6
https://forms.gle/ZFrQ726gCLTQkCdy7
https://forms.gle/CXBiG3pUR2dJFfo97

