
...

2025/1

...

March 2025
www.firebirdsql.org

emberwings@firebirdsql.org

http://www.firebirdsql.org/
mailto:emberwings@firebirdsql.org

The Firebird project was created at SourceForge on

July 31, 2000

This marked the beginning of Firebird's development as
an open-source database based on the InterBase source
code released by Borland.
Since then, Firebird's development has depended on
voluntary funding from people and companies who
benefit from its use.

 Thank you for your support!

EmberWings is a quarterly magazine published by the

Firebird Founda�on z.s., free to the public after a 3-month

delay. Regular donors get exclusive early access to every

new edition upon release .

Firebird Foundation z.s.

Support Firebird

...

https://sourceforge.net/projects/firebird/
https://www.firebirdsql.org/donate
https://firebirdsql.org/en/donate

In This Issue:In This Issue: Editorial

Wisdom of the elders

Why are some Firebird apps cursed?

Interview with Jim Starkey

Development update: 2025/Q1

Toolbox: DBWorkbench Lite

Answers to your questions

Planet Firebird

The Firebird Butler Project

...And now for something completely different

Firebird in the year of the Wood Snake
Dear Readers,

As we step into 2025, the Firebird community �nds itself on the path to an

extraordinary milestone. This year marks 25 years since Firebird �rst emerged as

an independent open-source database project, and on July 31, 2025, we will

of�cially celebrate a quarter-century of innovation, dedication, and progress.

Born in 2000 from the open-sourcing of Borland’s InterBase, Firebird has since

carved out its own legacy, evolving through the contributions of a passionate

global community. What began as a bold effort to preserve and expand a powerful

database system has �ourished into a mature, feature-rich solution used by

businesses, developers, and institutions worldwide.

The journey has been one of perseverance and ingenuity. Firebird has continuously

advanced while staying true to its core values: reliability, ef�ciency, and

independence. Through major releases, performance enhancements, and an

unwavering commitment to open-source principles, Firebird has proven its

longevity in an ever-changing technological landscape.

The 25th Anniversary is not just a time to celebrate past achievements but also an

opportunity to look ahead. The project continues to evolve, with new

developments shaping the future of Firebird and ensuring it remains a competitive

choice for database solutions. As we move forward, community involvement

remains as crucial as ever. Whether through development, documentation,

advocacy, or simply sharing experiences, every contribution strengthens the

Firebird ecosystem.

This year will be �lled with moments of re�ection and anticipation. From special

events and retrospectives to discussions about the road ahead, 2025 promises to

be a de�ning chapter in Firebird’s story. Let’s honor the past, embrace the present,

and shape the future together.

Stay tuned—there’s much more to come!

Warm regards,
The EmberWings Team

4

The junior developer approached the master with a troubled look. “Master, I
seek your wisdom. I am building a scalable application atop Firebird. I have
chosen a framework to simplify my task, yet I find my efforts growing slower
and more tangled. The framework promises much, yet my application
stumbles under its weight. Why is this so?”

The master regarded the junior with a gentle smile. “Tell me, what does this
framework do?”

“It converts between objects and tables,” the junior said. “It abstracts the
database entirely, so I need not write SQL myself. It promises to work with any
database engine, so I am not bound to Firebird alone. And it wraps queries in
structures that seem simple but feel... unnatural.”

The master nodded knowingly. “Come,” he said, “let us visit the garden.”

In the garden stood an elegant fountain. Water flowed from a high spout,
cascading into a series of bowls, each smaller than the last, before finally
spilling into a broad basin below.

The master turned to the junior. “This fountain is like SQL,” he said. “Each bowl
is a query, naturally flowing into the next. The database is designed to move

5

data efficiently, one stream at a time.”

The master then placed a series of buckets under the fountain, each with pipes
connecting them in loops and spirals. The water sputtered, pooled, and spilled
in odd directions.

“This,” the master continued, “is an object-relational mapper. It insists the
fountain must behave like a series of buckets. It converts the flow of data into
something unnatural and laborious, because it believes the objects and the
database must mirror one another.”

The junior frowned. “But Master, does not the ORM make development
easier?”

“For small gardens, perhaps,” the master replied. “But Firebird, like any SQL
database, thrives when allowed to flow as it was designed. The ORM fights
against this flow, endlessly translating, until the fountain becomes clogged
with its own effort.”

The master walked to another part of the garden, where a cluster of tools lay.
He picked up a watering can and held it aloft.

“This is the Delphi TDataSet,” the master said, tipping the can to dribble water
onto a stone path. “It forces the fountain into a single, rigid flow, one drop at a
time. It treats each query as though it were a file on a disk. This abstraction is
not natural to Firebird, which works in sets and streams.”

The junior hesitated. “Master, what of frameworks that promise to work with
any database engine? Surely such versatility is useful?”

The master chuckled and pointed to a row of potted plants. Each pot was
different—some tall and narrow, others shallow and wide.

“Now imagine,” the master said, “a single watering can designed to water all
these pots. It must pour neither too much nor too little. It cannot adapt to the
unique needs of each pot, so it provides only the bare minimum to all. Such
frameworks, promising ‘unified access,’ reduce the capabilities of each engine
to the smallest common denominator. They waste the strengths of Firebird and
constrain its power.”

The junior stared at the tangled fountain, the rigid watering can, and the

6

neglected plants. “What, then, is the right way, Master?”

The master smiled. “The right abstraction is one that respects the nature of
Firebird. Write queries in its language, for SQL is its voice. Build your
application to work with its transactions, its indexing, its streams. Do not
demand that it pretend to be something it is not. When you abstract, do so to
enhance, not to obscure.”

The junior bowed deeply. “I understand, Master. I will abandon the frameworks
that force Firebird into unnatural shapes and let it flow as it was meant to.”

The master nodded. “Remember, junior: the river flows fastest when the rocks
are placed with care. Do not fight the river; guide it.”

And as the junior departed, he felt the weight of his code begin to lift, like a
fountain set free to flow once more.

7

Why are some Firebird apps cursed?
By Pavel Císař (IBPhoenix)

Every application will, at some point, encounter issues when running on
Firebird. Some of these are natural consequences of system evolution—
changes in dependencies, updates to the database engine, the need for re-
optimization as workloads shift, or the occasional performance bottleneck that
requires fine-tuning. Such challenges are expected in any long-lived software
system and are typically solvable with configuration adjustments or routine
maintenance.

However, some applications seem to experience persistent, recurring
problems—unexplained slowdowns, erratic behavior, and performance
degradation that defy conventional fixes. These applications feel as if they are
cursed, doomed to struggle with Firebird no matter what adjustments are
made. The real culprit, though, is not Firebird itself but rather fundamental
design flaws embedded in the application’s architecture.

In this article, we will explore the most common reasons why applications
become “cursed” when running on Firebird.

8

Understanding the Fundamentals of Firebird

Application Design

Many of these problems arise because the application is built on assumptions,

abstractions, and design choices that are either misaligned with Firebird’s

principles or, in some cases, in direct con�ict with them. Whether it’s the misuse of

ORM frameworks, poor database schema design, excessive reliance on indexing, or

the creation of arti�cial bottlenecks, these issues stem from a failure to

understand and respect how Firebird operates. The result is an application that

constantly �ghts against its own database rather than leveraging its strengths.

To properly understand the sources of problems, it is �rst necessary to know and

understand the key elements that de�ne the foundations of a "successful"

application. These pillars are:

Understanding Firebird architecture and implementation.

Correct identi�cation of data needs within the problem being solved, especially

their distribution in time and space, and in individual deployments.

These are then directly re�ected in:

Optimal use and management of key server resources, i.e. connections,

transactions and queries.

Proper database design.

Ef�cient data handling.

All these pillars are interconnected, and any de�ciency in one will automatically be

re�ected in all the others.

When designing an application architecture, this is especially evident in the choice

of appropriate compromises that de�ne the possibilities and limits of the resulting

architecture, which can subsequently be changed only very dif�cultly (if at all).

Let’s take a closer look at the individual pillars and their role.

9

Proper Use of Key Resources

Firebird’s performance hinges on the ef�cient management of three critical

resources: connections, transactions, and (prepared) queries. Understanding their

speci�c properties and parameters is vital to leveraging Firebird’s strengths and

avoiding common pitfalls.

Connections
A connection de�nes the parameters and properties of a link to Firebird, both on

the application side (e.g. character set, protocol) and on the server side (various

caches, session, internal structures, triggers etc.). This makes the connection the

most valuable (and most expensive) resource. The chosen way of using and

managing them is therefore a fundamental factor that de�nes the capabilities of

entire architecture. For example, using connection pooling affects the ability to use

prepared queries.

Transactions
Firebird’s transaction system is one of its standout features, offering �ne-grained

control over how data is handled, with a particularly notable feature being the

ability to run multiple transactions (with different parameters) simultaneously

within a single connection.

These options are not available for nothing, but because the Firebird architecture

requires careful handling of transactions for optimal function.

Prepared Queries
Prepared queries allow Firebird to compile an SQL statement once and reuse it

with different parameters, reducing parsing and optimization overhead. Although

newer versions of Firebird provide a cache of executed queries, which makes their

repeated calls more ef�cient, this feature has its limitations and shortcomings. For

frequently used queries, it is still preferable to use application-side prepared

queries. These are connection-bound, but can be used with any transaction.

10

Proper Database Design

The importance of proper database design has been pushed into the background,

especially in recent years, although a well-designed database is the backbone of

any database application. Poor design leads to over-complicated queries,

inef�cient storage, and maintenance headaches.

For example, the article "Challenges with Primary Keys " published in issue 3/24

describes the direct consequences of choosing a primary key type on query

complexity, stored data density and index ef�ciency. Similarly, choosing a

compromise between long varchar and BLOBs, choosing a character set, or using

user domains instead of built-in types affects application properties.

The category of database design also includes issues of data distribution,

prediction of the evolution of database content, or archiving and removal of data

that is no longer needed.

Ef�cient Data Handling

Firebird excels at set-based operations, but its performance suffers when

applications fetch or process excessive data. Ef�cient data handling ties closely to

transaction management and resource use. For example, an often overlooked issue

is the impact of data conversion between data types used by the application and

the server.

Firebird also allows you to use different strategies for working with data. Some

allow you to of�oad processing to the server, such as calculated columns, stored

procedures and functions, triggers, or PSQL blocks, others allow you to address

data (such as RDB$DB_KEY or RDB$RECORD_VERSION columns) or process it as

cursors (including bidirectional ones), etc.

Now that we have laid the foundations of "successful" applications, let’s take a

closer look at the most common application design pitfalls.

11

Misaligned Abstractions: The Wrong Tools for the Job

In the high-stakes arena of software development, the drive to be "�rst to market"

has shaped the industry over recent decades. This relentless pursuit of speed,

ampli�ed by the widespread adoption of agile methodologies, has prioritized rapid

delivery and adaptability above all else. Agile’s focus on iterative progress and

quick feedback loops has spurred the creation and heavy reliance on technologies

designed to accelerate development cycles. Tools like Object-Relational Mapping

(ORM) frameworks, abstractions such as Delphi’s TDataSet, and multi-database

connection layers have become staples in the developer’s toolkit, promising to

simplify database interactions and enhance �exibility.

Yet, this emphasis on speed and versatility has a hidden cost. Over time, the

overuse of these technologies has introduced fundamental �aws into database

application architectures, �aws that are dif�cult to unravel once entrenched.

While they deliver short-term wins by enabling rapid prototyping and deployment,

they often compromise long-term architectural integrity, leading to signi�cant

challenges in scalability, performance stability, maintenance, and upgrades.

Moreover, they frequently prevent developers from fully leveraging the speci�c

features and strengths of target database systems, such as Firebird, ultimately

undermining the potential for optimized, robust applications.

Generic Database Abstraction Layers

Different data stores and databases have a number of common features, which has

led to the emergence of APIs that allow them to be accessed in a uniform way (e.g.

ODBC, OLEDB, JDBC, Python DBAPI 2.0, .NET Data Provider, etc.). Drivers for

individual databases must then �t key functionality into the framework of a given

API, which leads to the �rst level of compromise.

Some APIs provide a certain degree of extensibility into which speci�c

functionality of a given database can be squeezed, but the architecture on which

the abstraction is based remains unchanged. If the speci�c functionality does not

correspond to this architecture, it cannot be included in the driver. For example,

the ability to run multiple independent transactions with different parameters

12

within a single connection cannot be made available in many generic APIs.

Of course, there are Firebird libraries that don’t use any generic APIs, or drivers

that go beyond the APIs they implement. But these APIs are the foundation upon

which other layers of "rapid application development" are built. These then add

additional layers of abstraction, complexity, and tradeoffs.

Essentially all "successful" large applications carefully avoid generic APIs, and in

case the application requires support for different database servers, they

implement their own speci�c abstraction (e.g. using a three-tier architecture).

The Pitfalls of Object-Relational Mapping (ORM)

ORMs such as Entity Framework (for .NET), Hibernate (for Java), and SQLAlchemy

(for Python) abstract the complexities of database operations, aiming to accelerate

development and minimize errors. They map database tables to programming

objects, enabling developers to work within familiar object-oriented paradigms.

Yet, this abstraction often adopts a generic approach, designed to support multiple

database systems, which can clash with Firebird’s speci�c optimizations and

features, leading to suboptimal application performance.

The biggest shortcoming of all ORMs is the way they manage connections,

transactions, and queries. With some exceptions, they use a generic interface for

working with the databases of the given environment, e.g. Python DBAPI 2.0 for

SQLAlchemy, DbProvider for EF, or JDBC for Hibernate. It is therefore very

dif�cult and often impossible to use the speci�c capabilities of Firebird. These

systems also introduce their own conventions for a range of issues, from working

with transactions to mapping between objects and databases, including migration

between versions, to SQL generation, which introduce additional limitations and

trade-offs.

In practice, ORM can be successfully used for smaller applications, but as

complexity increases, the success rate decreases signi�cantly. Using appropriate

strategies can compensate for the problems of ORM to some extent.

Choose an ORM with strong Firebird support. SQLAlchemy offers a Firebird

dialect, and Entity Framework has providers for Firebird, though support for

Firebird-speci�c features varies. ORMs allowing raw SQL execution or custom

() 13

mappings (e.g., for stored procedures) are preferable.

For performance-critical sections, consider a micro-ORM (e.g., Dapper for .NET)

or direct SQL. Micro-ORMs provide lightweight mapping with greater control

over SQL, balancing convenience and performance. Combining an ORM for

general use with targeted SQL for high-performance areas can leverage both

tools effectively.

ORMs often favor an object-oriented approach, retrieving and manipulating

individual objects (rows). This can lead to the “N+1 selects” problem, where

multiple queries fetch related data (e.g., fetching an order, then querying each

order item separately) instead of a single, optimized join. To mitigate this,

developers can use ORM features like eager loading (e.g., Entity Framework’s

Include or SQLAlchemy’s joinedload) to fetch related data in one query.

ORMs typically manage transactions via sessions or units of work, but their

default behavior—such as keeping transactions open across multiple operations

—may not align with Firebird’s needs. Developers must ensure transactions are

committed or rolled back promptly, potentially adjusting the ORM’s transaction

scope or using explicit transaction control.

Most ORMs, such as Entity Framework and SQLAlchemy, allow execution of raw

SQL. Developers should use this feature for complex or performance-critical

queries. For example, employ the ORM for simple CRUD (Create, Read, Update,

Delete) operations where it excels, and switch to custom SQL for complex tasks.

This balances development speed with performance.

Use pro�ling tools to monitor database interactions, identifying slow or

inef�cient ORM-generated queries. Adjust ORM con�gurations or replace

problematic queries with optimized SQL as needed.

The Limitations of Delphi’s TDataSet

Delphi’s TDataSet is a core abstraction that provides a uniform interface for

interacting with various databases, making it a popular choice among

Delphi/Lazarus developers. Its integration with Delphi’s component-based

development model allows for rapid application development, especially when

using libraries such as FireDAC or IBX for Lazarus, which offer Firebird-speci�c

optimizations.

14

The problem with libraries that work with the TDataSet abstraction is multi-

faceted. First, the entire abstraction is just another generic API that is

implemented in different ways, for example universally using drivers for individual

databases, or speci�c implementations for a particular database. All of them suffer

from the limitation of an architecture based on a �le-based database abstraction

like dBase or Paradox that cannot be satisfactorily mapped to SQL databases,

while database-agnostic implementations additionally suffer from the use of a

generic API for accessing the database.

One of the most signi�cant problems with TDataSet is that it encourages row-by-

row processing instead of set-based operations. This approach, while intuitive for

developers accustomed to local databases, is highly inef�cient in a client-server

environment. Instead of looping through rows in code, developers should structure

their queries to process data in bulk whenever possible, reducing network

overhead and improving overall ef�ciency.

Another inef�ciency arises from excessive automatic fetching of data. Firebird is

most ef�cient when queries retrieve only the necessary records, keeping network

traf�c and server load to a minimum. However, TDataSet components often fetch

more data than required, sometimes pulling entire tables when only a few records

are needed. This problem is exacerbated when using UI elements like data-aware

grids, which may automatically request all available rows for display, even if the

user only needs a subset. While TQuery offers more �exibility than TTable,

developers must still be mindful of how their queries are executed. The best

practice is to design queries to return only the data that is immediately needed,

using LIMIT clauses, indexed searches, and careful selection of �elds to avoid

unnecessary overhead.

Beyond performance concerns, TDataSet introduces maintainability challenges

that become signi�cant as applications grow. One of the biggest drawbacks of

Delphi’s component-based database design is that query de�nitions, parameters,

and transaction settings are often stored in component properties rather than

centralized in source code. While this makes development faster in the early

stages, it can create a fragmented and dif�cult-to-maintain system as complexity

increases. Developers often struggle to track which queries are executed where, as

important database logic is scattered across multiple forms and data modules

15

instead of being managed in a structured and version-controlled source �le.

The biggest problem, however, is the fact that TDataSet is the cornerstone of the

implementation of the Model-View-Controller (MVC) concept, and to which the

data-aware component system is linked. Developers are therefore faced with a

dif�cult choice: either adapt to the limitations of this abstraction system or create

their own MVC system from scratch with better features. For quite

understandable reasons, most take the path of least resistance.

Other general libraries and frameworks

The relational model and SQL follow a structured approach with recurring

patterns, making them ideal for automation. Many solutions have emerged to

streamline these repetitive tasks and save development time. However, they all

share a fundamental �aw — the attempt to force different databases into a single

abstraction.

The quality and features of each solution depend on the resources invested in its

development, which in turn rely on its popularity and user base. As a result, most

solutions support multiple database systems — bringing with them all the

drawbacks of a one-size-�ts-all approach.

These technologies have undeniably simpli�ed and accelerated the development

of simple and moderately complex applications. However, their bene�ts do not

scale — beyond a certain level of schema complexity, data volume, or concurrent

users, achieving good performance becomes increasingly dif�cult and costly, or

even impossible.

Successful complex applications share a common trait: they either rely on custom

technologies for rapid development or adopt a hybrid approach, using generic

solutions sparingly within a tailored architecture.

16

...

Arti�cial Bottlenecks

Even applications that successfully avoid the trap of misaligned abstractions can

become "cursed" if they contain arti�cial bottlenecks. These are often introduced

unintentionally, either by enforcing unnecessary synchronization, designing

work�ows that concentrate too much load on speci�c points, or failing to plan for

scalability. These bottlenecks don’t always show up immediately, but as the

number of users grows or the dataset increases, they become major performance

constraints. The worst part? These problems are entirely avoidable with a better

understanding of Firebird’s concurrency model and proper architectural planning.

One of the most common arti�cial bottlenecks occurs at application startup. Many

applications perform expensive database operations when they initialize, such as

loading large amounts of data into memory, checking con�guration tables, or

executing extensive background queries to "warm up" the system. When a handful

of users launch the application, this may not be noticeable. But when dozens or

hundreds of users start the system at the same time—especially at the beginning of

a workday—Firebird can suddenly be overwhelmed with simultaneous, expensive

queries, all competing for resources.

A surprisingly common phenomenon is the erroneous work with updating or

deleting data. Statistically, in database applications, the most common operation

with data is inserting new records (about 75%), followed by updating records

(about 20%), and the rarest operation is deleting records (about 5%). While

inserting data has practically no synchronization requirements and the throughput

of parallel operations is very high, especially in Firebird, the same cannot be said

for updating or deleting data. If we ignore the possibility of collision between

competing transactions when simultaneously updating the same rows, updating a

row (especially repeated ones) creates a problem with the chain of row versions

and the removal of unnecessary versions. An often overlooked factor of data

changes is that every update or deletion triggers multiple index updates — �rst

during the modi�cation itself and again when outdated row versions are removed

— further impacting performance.

When designing an application, it is essential that all updates or deletions of data

are well justi�ed and documented, as these are natural bottlenecks in the

17

database. Many applications perform unnecessarily frequent updates, mostly of

operational data and metadata (parameters for operations, amounts, etc.), or mass

updates at inappropriate times. The biggest sin is combining insert and update

operations (e.g. updating the amount in another row).

Conclusion

Applications that struggle with Firebird often do so not because of external factors

but because of fundamental design choices made early in development. Many of

these issues are avoidable, yet they persist due to reliance on generic abstractions,

misguided optimization strategies, and development practices that fail to consider

Firebird’s unique characteristics.

The difference between a problematic application and a well-functioning one is a

matter of approach. Understanding Firebird’s strengths and designing with them

in mind leads to systems that perform ef�ciently and scale effectively. Ignoring

them results in constant frustration, poor maintainability, and escalating costs.

Firebird is not a database that punishes developers — it rewards those who take

the time to understand it. Applications built with this mindset are not only free

from unnecessary struggles but can fully leverage Firebird’s capabilities to deliver

robust, scalable, and high-performing solutions.

18

...

Interview with Jim Starkey

Few �gures in database history have left as deep an imprint as Jim Starkey. Firebird

users know him as the creator of InterBase, the system from which Firebird

emerged after its open-sourcing in 2000. But InterBase is just one chapter in a

career de�ned by groundbreaking ideas. Starkey pioneered multi-version

concurrency control (MVCC), built database engines that rede�ned industry

norms, and continuously challenged conventional wisdom in database design.

In this rare interview, we step beyond InterBase to explore his entire journey—

from his early innovations to later projects like Netfrastructure, Falcon, and

NuoDB, all the way to his most recent work. What drove his thinking? What

lessons has he learned? And what does he see as the next frontier in database

technology? Starkey’s insights are always sharp, often provocative, and never dull

—so read on.

19

You’ve been working with databases since the late 1960s, star�ng with Model
204 and the Datacomputer before moving on to projects like DBMS-11,
Datatrieve, and Rdb/ELN. Looking back, what were the biggest challenges and
insights from those early projects? Did any par�cular experiences from that era
in�uence your later work? How do you compare the approaches and ideas from
those early systems with what came later?

To be fair, originally, I was more concerned with eking out a living than re-inventing

database systems. But since you asked, I liked the Model 204 data model (a record

was an abstract collection of attribute/value pairs) but the access language left me

cold. On the Datacomputer, I liked the access language but hated the hierarchical

data model. But what I really wanted to do was write a relational database system,

but CCA would hear none of that (too academic to be commercially viable).

With regard to DBMS-11 (mainframe IDMS ported to the PDP-11), it was hard to

say whether I hated the data model or access language more, but I did lift the page

structure that I later used for quite a few systems.

Datatrieve-11 reprised the Datalanguage from the Datacomputer. The big

challenge was making a large 4th generation language �t on a 16 bit computer with

one developer (me) and a year to do it in. VAX Datatrieve had a much larger team

but also had to support cross node access, business graphics, VAX DBMS (another

hyper-ugly CODASYL database) access, relational access, and a rich API. But to get

it done, I had to spin off the Common Data Dictionary and the relational database

projects.

The biggest frustration with VAX Datatrieve was the VAX DBMS two phase record

locking transaction model that made it next to unusable for interactive users. That

led to the epiphany that transactions could be managed by keeping multiple record

versions and doing to book-keeping for which transaction should see which

version; thus the �rst JRD (later Rdb/ELN) and MVCC were born. The DEC

database guys, of course, hated it, and a database war ensued. The big lesson was

that you can’t teach database engineers new tricks, and if you want to explore new

technology, starting your own company is usually the only solution (lather, rinse,

and repeat). MVCC, of course, did change the world but it did take 30 years.

20

Unlike your earlier work at DEC, InterBase was fully your own crea�on—you had
complete control over its design and direc�on. But a�er a few years, you sold
Groton Database Systems and InterBase to Ashton-Tate. What drove that
decision? Were you dissa�s�ed with where InterBase was heading, looking for a
break, or eager to explore new database ideas that couldn’t be realized within
InterBase? Were there plans or features you had envisioned for InterBase that
were le� un�nished due to the sale?

There comes a point in many new starts where the technology is more valuable to

established companies with mature marketing and sales organizations. And, while

pro�table on paper, we were chronically broke. So, when approached for

acquisition by two different companies, the question became which would be the

better partner. In fact, however, the deal with Ashton-Tate was a 7-year staged

acquisition, so we had plenty of time to work on bells and whistles.

When InterBase was open-sourced, it led to the crea�on of the Firebird project,
which has now been ac�vely developed for 25 years. How do you view Firebird’s
stewardship of your InterBase legacy? Are you sa�s�ed with how the project has
evolved, and is there anything you would have done di�erently? Do you have
any sugges�ons for Firebird developers as they con�nue to advance the
database?

Mixed feelings. I would have gone for simplicity, fewer esoteric options, more

backwards compatibility, an internal SQL engine, and a better SQL API. My rather

jaundiced view of current Firebird development is that it is mostly putting warts on

warts rather than moving the project architecturally forward.

I have to say that Firebird developers, like MySQL developers, have an intense gut-

based aversion to new ideas. New ideas shouldn’t be rejected out of hand. New

ideas are never perfect but should be seen as a starting point. Going down rat-

holes is part of the job.

The Vulcan project was developed with the goal of introducing symmetric
mul�processing (SMP) to Firebird, driven primarily by SAS’s interests. Beyond
that core objec�ve, were there other requirements from SAS, or improvements
and innova�ons you introduced independently? How do you view the way

21

Vulcan was later integrated into the Firebird codebase?

The primary goals of Vulcan were to make it 64 bit and port it to Sun OS. A lot of

code came over from Netfrastructure, which was SMP-based, so that was mostly a

freebie.

I wasn’t particularly happy that a number of key Vulcan features such as the

provider architecture and the multi-tiered con�guration system were originally

rejected out of hand. I was amused that much (maybe all) of Vulcan osmosed into

Firebird over decade.

With Ne�rastructure, you explored integra�ng databases with applica�on logic
in new ways. What was the core idea behind the project, and what were the
biggest technical or conceptual hurdles?

The big ideas behind Netfrastructure were a) a SQL engine operating off an in-

memory database using the disk for back�ll, b) JDBC as the sole API, c) text search,

d) an integrated internal Java Virtual Machine, and e) an open ended, multi-tenant

architecture for layered apps.

The big problem with Netfrastructure was timing. It came out when everyone

thought that all Internet apps should be free and the VCs were obsessed with dot

Coms that could be �ipped in six months. Just a little bit later, the same VCs were

obsessed dealing with a couple of bankruptcies a week.

Ne�rastructure remained rela�vely unknown—was it ever marketed or used
beyond a few select cases?

It was superbly successful in a small number of very challenging applications.

Perhaps you may have noticed that marketing has never been one of my long suits.

In 2006, you sold the Ne�rastructure web so�ware business to MySQL AB and
joined the company to work on Falcon. How much of the Ne�rastructure
database architecture made its way into Falcon?

22

All of it. The biggest extension was a bomb-proof serial log for transaction

recovery under any circumstance.

Falcon was expected to be a major leap forward for MySQL, and many believed it
could rede�ne MySQL’s capabili�es. But the project ul�mately collapsed a�er
MySQL AB was acquired by Sun, and then Sun was acquired by Oracle. From
your perspec�ve, what actually happened? Were the challenges primarily
technical, organiza�onal, or something else en�rely? Were there fundamental
di�erences in opinion that made development di�cult? And were any of Falcon’s
innova�ons or design ideas later applied elsewhere?

MySQL was preparing to go public when Oracle bought InnoDB, MySQL’s only

transactional storage engine out from underneath them. Falcon was Plan B in case

Oracle cancelled MySQL’s right to ship InnoDB. Oracle didn’t, so it came down to a

horse race between Falcon and InnoDB performance. Each approximately doubled

in speed (much like the competition between JRD and Rdb/VMS at DEC). The big

frustration was when Google put the Falcon user mode read/write locks into

InnoDB. But then Oracle bought Sun and the horse race was called off.

NuoDB (originally NimbusDB) introduced a fundamentally di�erent approach to
database architecture, emphasizing elas�city and cloud scalability. What led you
to pursue distributed databases, and what were the most di�cult engineering
challenges you faced?

I was frustrated by what performance could be achieved on SMP systems and the

problems with shared-nothing distributed schemes. I went into a shower on a

Sunday morning thinking about how to bring a new node into a running distributed

database and came out about an hour later with the more or less complete NuoDB

architecture in my head. (Should I say that we designed our house around the need

for very long architectural showers?)

Like any new technology, there were at least a dozen intractable problems. What

I’ve learned to do is to repress the panic, take a long look out to sea, �nd an

existence proof that a solution was possible, they wait to get smarter. Hasn’t failed

yet. A good example of an apparently intractable problem is that when a node re-

enters a running cluster, how does it know what part of the database stored locally

23

is current and correct and what parts need to be fetched from other nodes.

While NuoDB has been recognized for its innova�ons, it has remained a niche
product rather than achieving widespread adop�on. Why do you think that is?
Were there technical limita�ons, marke�ng or leadership missteps, or simply less
demand than an�cipated for databases with these characteris�cs?

Due to a non-disparagement agreement, I’m afraid that I can’t comment.

I have to ask about your last project—AmorphousDB. I �rst heard about it in your
2016 interview for ODBMS Industry Watch, where you described it as a radical
departure from tradi�onal database architecture—poten�ally ‘the last database
system ever needed.’ It was an intriguing read, but since then, there have been
no public updates. Did the project progress beyond the conceptual stage, and
what ul�mately happened to it?

When I started what became Interbase, it was still possible to boot-strap a

company out of revenues. That’s no longer the case, and AI has sucked all the

oxygen out of the investment and partnership rooms. The technology is fabulous,

but nobody gives a hoot about database systems now. In short, no traction. Still

working on it, but at the moment, no end game in sight.

Having worked on a wide range of database systems over the years, what are the
biggest lessons you’ve learned—whether they’re technical, business-related, or
about the database industry as a whole? Looking back, what key principles or
insights do you think every database engineer should understand to succeed in
this �eld?

I think there are three essential principles. First, architecture is the art of making

all of the pieces �t together. Second, never fall in love with your �rst idea. Finally,

anyone working on a hard problem who isn’t a genius or a fool is going to gain

signi�cant insight into the large problem. When you get smarter, go back revise

what you’ve done.

Thanks for you �me!

24

https://www.odbms.org/blog/2016/08/database-challenges-and-innovations-interview-with-jim-starkey/

Excerpt from ODBMS Industry Watch Interview

What are the most challenging issues in databases right now?

I think it’s time to step back and reexamine the assumptions that have accreted

around database technology – data model, API, access language, data semantics,

and implementation architectures. The “relational model”, for example, is based on

what Codd called relations and we call tables, but otherwise have nothing to do

with his mathematic model. That model, based on set theory, requires automatic

duplicate elimination. To the best of my knowledge, nobody ever implemented

Codd’s model, but we still have tables which bear a scary resemblance to decks of

punch cards. Are they necessary? Or do they just get in the way?

Isn’t it ironic that in 2016 a non-skilled user can �nd a web page from Google’s

untold petabytes of data in millisecond time, but a highly trained SQL expert can’t

do the same thing in a relational database one billionth the size?. SQL has no

provision for �exible text search, no provision for multi-column, multi-table search,

and no mechanics in the APIs to handle the results if it could do them. And this is

just one a dozen problems that SQL databases can’t handle. It was a really good

technical �t for computers, memory, and disks of the 1980’s, but is it right answer

now?

Let me say a few things about my current project, AmorphousDB, an

implementation of the Amorphous Data Model (meaning, no data model at all).

AmorphousDB is my modest effort to question everything database.

The best way to think about Amorphous is to envision a relational database and

mentally erase the boxes around the tables so all records free �oat in the same

space – including data and metadata. Then, if you’re uncomfortable, add back a

“record type” attribute and associated syntactic sugar, so table-type semantics are

available, but optional. Then abandon punch card data semantics and view all data

as abstract and subject to search. Eliminate the fourteen different types of

numbers and strings, leaving simply numbers and strings, but add useful types like

URL’s, email addresses, and money. Index everything unless told not to. Finally,

imagine an API that �ts on a single sheet of paper (OK, 9 point font, both sides) and

an implementation that can span hundreds of nodes. That’s AmorphousDB.

25

Development update: 2025/Q1
A regular overview of new developments and releases in Firebird Project

Releases:
Firebird 5.0.2, released 12.2.2025

�rebird-driver for Python 1.10.9, released 3.1.2025

Jaybird 6.0.0, released 27.12.2024

Of�cial Firebird Docker Images

We are pleased to announce the successful migration of Firebird Docker images to

their new repository. The images are now maintained on GitHub and published on

Docker Hub, ensuring better accessibility and continued support for the Firebird

community. This transition would not have been possible without the pioneering

efforts of F.D. Castel, who laid the groundwork, and the invaluable contributions of

Adriano dos Santos Fernandes, who played a key role in improving and

streamlining the migration process.

26

https://github.com/FirebirdSQL/firebird/releases/tag/v5.0.2
https://pypi.org/project/firebird-driver/
https://github.com/FirebirdSQL/jaybird/releases/tag/v6.0.0
https://github.com/FirebirdSQL/firebird-docker
https://hub.docker.com/r/firebirdsql/firebird

News from Firebird Release Planing Meeting

Last year, the Firebird Foundation and Firebird Admins introduced bi-annual

Firebird Release Planning Meetings (RPM) with Firebird Partners and Sponsors.

These meetings, a revival of the former Technical Task Group (TTG) gatherings,

take place every March and September, starting on the second Monday, in a closed

group setting.

We aim to keep you updated on the outcomes, including key achievements from

the past six months and plans for development and releases in the next six months.

Summary of last six months

Firebird Engine

Firebird 5.0.2 was released on 12-Feb-2025, containing 11 improvements (with

blob data prefetch being a major one) and around 50 bug�xes.

Adriano dos Santos Fernandes has mostly completed the SQL schema

implementation and published it for review in February 2025, with many

discussions happened along the road.

Alex Peshkov continued his work on the shared metadata cache.

Vlad Khorsun has implemented a number of blob fetch improvements in the

remote protocol that were already evaluated and even backported into v5.0.2.

A number of performance improvements regarding NULL handing in index scans

have been implemented. ODS 14 was changed in some aspects (header page and

index root page layout), BLOBs over 4GB are now properly supported.

Other features mentioned in the roadmap:

Support for tablespaces has been published for review in November 2024, post-

�xes are in progress.

ROW data type feature has been discussed and now in the �nal adjustments

stage.

JSON support is being discussed (2 parts of the overall proposal were presented,

3rd is coming soon).

Implementation of the SQL:MED standard (declarative foreign data sources and

cross-database queries) has been presented for discussion.

27

UNLIST table-valued function implementation has been published for review,

now �xing some issues that were reported.

.NET Provider
Completed support for EF Core 9.

Releases: EF provider - 10.1.0.0, FirebirdClient 10.3.2.0, EF Core - 12.0.0.0

Jaybird

Major release: Jaybird 6.0.0 (27-Dec-2024)

Bug�x release: Jaybird 5.0.6 (16-Oct-2024)

Up to the end of December, most of our work has been on testing Jaybird 6 and

writing and updating the release notes and other documentation. Some minor

features were added, including support for a con�gurable socket factory and

revising the handling of holdable forward-only result sets.

We started work on Jaybird 7. Copyright information in Jaybird was updated to

use SPDX, so that Jaybird users that need it can generate SBOM information.

Python drivers and libraries
Two firebird-driver releases with small bug �xes.

Work started on revitalization of full Firebird Python stack, starting with

firebird-base package that’s a core dependency (almost �nished).

Firebird QA
Implemented / adjusted / refactored over 100 QA tests.

QA-scenario: implemented code for show lines from �rebird.log that match to

selected failed test.

Changed python script that generates code for QA report so that this code will

pass validation of W3C and JS.

Search the solution of annoying problem with pytest when it sporadically hangs

on exit (no return to caller batch).

Refactored aux report about missed QA runs. Added info about increased values

of "F" and "E" counters.

Problem on Linux host that run QA script using cron: time 'shifts' relatively root

settings.

28

Completed investigation that relates to performance of INDEX RANGE SCAN in

case of NARROW character set, for misc charsets and collations.

Refactored QA scenario (currently for Windows only) in order to reduce overall

time of QA pass for all FB families.

Valuable performance regression in all tests that use ES after #658abd2. Found

thanks to the moving medians report (implemented in sep-2024).

Refactored QA-report: implemented ability to see full test history for every test,

not only for those which have "F" or "E" outcome for last 30 QA runs.

�rebird-driver problem: can not make connection to Services API using NON-

ascii user/password/role.

�rebird-driver FR: need ability to get BLOB_ID after blob has been created /

changed. QA-problem: pytest: sporadic "Exception ignored in atexit callback:

<function _api_shutdown at … hex-addr… >".

Several tests (related tickets in GH tracker) could not be implemented because of

lack additional info. They now have status = 'deferred'.

Firebird Documentation
Various minor improvements to the Language References

We added links in the old Language Reference Updates to point readers to the

Firebird 5.0 Language Reference for more complete/up-to-date information

Updated and improved various redirects of old links or versions of

documentation to the new version

Work started on reorganizing/improving documentation URLs

Work on new Firebird Con�guration Reference

Firebird Butler & Saturnin

There was no progress on Firebird Butler speci�cations or Saturnin over last six

months.

However, we want to resume work on Saturnin after revitalizing its dependencies

and parts of the project itself (see "Firebird drivers" for details).

29

Plans for March - August 2025

Firebird Engine

v4.0.6 release was planned to be published shortly after v5.0.2 but still in the

pipeline, to be released later in March.

v3.0.13 release is currently scheduled for Q3 2025.

Shared metadata cache is expected to complete in May-June.

The Firebird 6.0 roadmap was updated to re�ect the current status. We expect

that ODS will be �nalized during the next 6 months. We’ll review and merge the

already proposed features and publish the Alpha release in Q3 this year.

.NET Provider
One major plan for 2025 is dropping support for .NET Framework. It’s been a

decade since .NET (Core) happened and keeping old TFM takes precious resources.

The last supported version will be kept in a separate branch. Possibly for security

�xes or data corruption issues, through donation to FFzs.

Jaybird
Likely (depending on content): bug�x releases Jaybird 5.0.7 and 6.0.1

Implementing support for protocol 19 (Firebird 5.0.3) inline blobs, and

backporting it to Jaybird 5 and 6

Revise FBManager API to allow (amongst others) to set the authentication

plugins

Add support for CALL statement and named procedure/function parameters

Reimplement and improve CallableStatement (long-term work)

Python drivers and libraries
The Firebird Project currently maintains 9 key Python projects (+ two legacy ones),

which support Python 3.8 that is no longer maintained. It was decided to move the

full stack forward to Python 3.11 as oldest supported Python version. This will also

allow us to starting using new Python features (for example Structural Pattern

Matching).

During the upgrade, we also want to clear as much technological debt as possible,

30

introduce improvements, optimizations and improve test coverage. We’ll also

rewrite tests for these packages from UnitTest to pytest.

Packages firebird-base, firebird-driver, firebird-lib and

firebird-butler-protobuf will be moved to new major version: 2.0.0.

Package firebird-qa will be �nally promoted to 1.0.0 (currently 0.20.0).

The firebird-uuid package is still in a beta stage (0.3.0), and will likely

undergo a signi�cant rewrite, hence it will retain it’s 0.x versioning

Also Saturnin packages saturnin, satirnin-sdk and saturnin-core are

still in beta, so they will be bumped to 0.10.0 from current version 0.9.0.

We also consider to make a maintenance release for legacy fdb driver with some

�xes, mostly related to compatibility with Python 3.13. However, the �nal decision

has not yet been made.

Firebird QA
We are planning to move the entire QA framework to a dedicated machine,

separate from IBSurgeon’s daily test server, which is shared within our company.

This will allow us to consolidate two key scheduled tasks on a single system:

Running QA scenarios at night.

Running OLTP-EMUL on Firebird 4.x to 6.x and uploading reports to

�rebirdtest.com, reviving a process that was discontinued years ago.

Next, we aim to improve reporting by generating a single HTML page that

consolidates QA results for both Windows and Linux. Currently, reports are

uploaded separately by OS, requiring manual comparison when failures occur—

especially in Firebird 6.x, where results must be checked on two different pages.

Additionally, we are considering a full re-implementation of the server-side QA

system. The current setup relies on static pre-generated HTML pages with

complex JavaScript, which is becoming unsustainable due to the growing size of

test history data. Instead, we want to move toward dynamically generated pages,

at least for test history, ensuring reports are created only when requested by

users.

31

Firebird Documentation
Finish reorganizing/improving documentation URLs

Continue work on Firebird Con�guration Reference (long-term work)

Start Firebird 6.0 Language Reference (long-term work)

BLOB revolution

In the upcoming version of Firebird 5.0.3, there will be signi�cant improvements to

BLOB data transfer across high-latency networks like the Internet: for example,

transferring 8191 bytes as BLOB will be 3 times faster than using VARCHAR! This

optimization dramatically improves BLOB transfer speeds, bringing them on par

with VARCHAR data. However, to leverage this enhancement, both server and

client components must be updated to the newest version. The performance

breakthrough enables ef�cient cloud hosting of Firebird databases while

maintaining full compatibility with traditional client applications. This

advancement opens exciting new possibilities for cloud-based Firebird

deployments, making remote database access substantially more practical for real-

world applications.

32

Toolbox: Database Workbench Lite
The right database tools can make all the difference. For Firebird developers and

database administrators, Database Workbench by Upscene Produc�ons has been

a trusted choice for years. Originally launched in the early 2000s with a focus on

InterBase and Firebird, it quickly evolved into a multi-engine database

development environment, supporting MySQL, Oracle, and more. Packed with

features for database design, SQL scripting, and performance tuning, it has

become a comprehensive suite for professionals.

But not everyone needs—or can afford—the full version. That’s where Database
Workbench Lite for Firebird comes in. This free edition, tailored speci�cally for

Firebird, provides essential database management tools without the cost. But does

it offer enough functionality, or are its limitations too restrictive? In this review,

we’ll explore what Database Workbench Lite delivers, where it excels, and where it

falls short.

For this review, we used version 6.6.0, released on February 11, 2025.

33

One key point upfront: Database Workbench Lite is strictly for personal, non-

commercial use and works only with Firebird. For commercial use, a paid license is

required, available in Basic, Professional, and Enterprise tiers, each offering

different levels of functionality. The single license includes support for one

database type, with additional modules available for purchase.

The Lite version also comes with several limitations. Beyond reduced functionality,

it allows registration of only two servers and two databases per server.

Database Workbench is a 64-bit Windows application written in Delphi, featuring

a standard, single-window interface with toolbars and a side panel. A larger screen

is recommended for comfortable use. For this reason, the screenshots in this

review are mostly just cutouts of the relevant part of the screen.

While the Lite version lacks most tools from the commercial editions, they remain

in the menus and toolbars. Clicking on them triggers a modal window stating the

feature isn’t available. Hence it is a good idea to disable unnecessary toolbars to

reduce clutter and save screen space.

34

...

The panel docked at the left edge has a dual function. First, it contains the Server

Manager for managing registered servers and databases, and then it contains the

Managers of open database connections. Both have the form of a standard

treeview, displaying objects according to context. Activating individual objects

opens the corresponding editor, and the context menu offers additional available

actions.

The database object editors offer all the essential functionality expected from a

tool of this type, with a few useful enhancements. Notably, the stored procedure

editor allows for direct procedure testing.

What is particularly pleasing is the (P)SQL editor, which, in addition to object name

completion and syntax highlighting, also offer structural folding (the display of the

contents of a collapsed block in a tooltip is particularly elegant) and code

templates. The context menu then offers other functions, including speci�c ones

such as inserting stored procedure parameters in the appropriate format.

35

...

The SQL Editor has two separate panels: one for executing individual commands

and another for scripts. However, you can edit multiple statements in the same

window and execute a selected one. Depending on the Empty Line is Statement

Separator setting, you can also separate statements with empty lines and run a

speci�c one by placing the cursor inside it.

36

...

...

The editor is multi-threaded, allowing you to execute a statement while continuing

to work in Database Workbench. Each editor instance opens a new database

connection, but this can be disabled.

Tabs below the editor window let you manage multiple SQL statements, which can

be saved and reloaded. You can add, delete, or rename tabs via toolbar buttons or

the right-click menu. Each tab has its own result set, but only one is visible at a

time. Dragging a �le from Windows Explorer into the SQL Editor opens it in a new

tab.

When an SQL statement contains parameters, you must �rst click the Prepare

button to enter values for them. However, instead of switching to the Parameters

tab, it incorrectly defaults to the Plan Analysis tab, which isn’t available in the Lite

version. On the plus side, the parameter editor maintains a history of previously

entered values for convenience.

Although the Lite version lacks Plan Analysis, it still displays the execution plan in

an explained format. It also provides execution statistics in both graphical and

tabular formats.

37

...

The result set is shown in the grid in the bottom half of the SQL Editor. In general,

the result set is "live", meaning that you can edit the data in the result set. However,

if the result set comes from multiple tables, it could be the case that some columns

can be edited while others cannot.

An important feature of the editor is the ability to set limits for the amount of data

being loaded (either by the number of rows or the volume of data). The editor will

then display a warning when the limit is reached with the option to determine the

next course of action.

The Lite version also includes a visual SQL query builder, that also parses the

current statement and displays it.

The Lite version also offers data export (although the number of formats is

limited), metadata extraction, basic database maintenance (backup, restore,

sweep, gstat statistics, recompute indices and recompile PSQL) and server

administration (user editor, log �le inspection, connection monitor)

38

...

Summary

Despite all its limitations, Database Workbench Lite offers everything you need to

comfortably work with Firebird databases. It is clear that this is a mature product

with well-thought-out features, the only weakness of which is a somewhat

confusing interface (which is a typical price for complexity).

39

...

Answers to your questions
Documentation is said to be a collection of answers to unspoken questions. If you

ask a search engine, it will answer you with a link to a document that (hopefully)

contains the answer. There are documents, forums and entire systems like Stack

Over�ow that consisting only of questions and answers. And now an army of AIs is

starting to chase us to answer our questions. Questions and answers cannot be

avoided, there is no hiding place.

However, amidst the sea of routine questions and responses, there lie truly

captivating inquiries and answers, like hidden treasures. Our commitment is to

regularly present you with a curated collection of these precious gems.

40

Details about Oldsest Snapshot Transaction

Greg Kay asked:

We are using Classic server on a Linux with Windows clients. There are about 110

users with 450 connections. The header page printout reports:

Database header page information:

 Oldest transaction 22951

 Oldest active 319143

 Oldest snapshot 317998

 Next transaction 572981

My question is why is the "Oldest snapshot" considerably less than the "Oldest

active"? My understanding is that the "Oldest snapshot" should be close to the

"Oldest Active".

Ann W. Harrison answers:

Sigh. The serious problem is the difference between Next transaction and Oldest

active. But to answer your question …

Each transaction has a lock on its own identity. Each lock has a name, which is the

transaction id of the transaction that owns the lock, and a data space in which it

keeps the identity of the oldest transaction that was running when it started.

When a transaction starts, it queries the transaction locks in the lock table, looking

for two pieces of information:

1. the identity of the oldest transaction currently running and

2. the identity of the oldest transaction that was running when any active

transaction started.

The identity of the oldest running transaction is the minimum value of the lock

name (for the transaction lock series, but "lock series" is an advance construct and

won’t be discussed until next semester.)

The identity of the oldest transaction running when any active transaction started

is the data from the lock with the lowest name - or the minimum value of all data

41

values in the transaction lock series.

The transaction puts the �rst value (oldest currently running) in its transaction

lock data area. It uses the second value to determine what old versions can be

garbage collected. Anything older than that value can be, nothing equal to or

greater can, unless it’s know to have rolled back.

OK so far? That was the easy part. It was designed for classic, where each

connection has its own process but the state of transactions has to be shared

among processes.

The oldest active is kept in individual transaction blocks. However, new

transactions get their transaction number from the database header page, so the

header page must be written whenever a transaction starts. Since the whole page

is written, and since people often want to know the state of transaction activity,

the oldest active number is also written on the database header page when a

transaction starts.

And, to make bookkeeping easier for a shared server, the database block also

tracks the oldest active. But for reasons unclear to me, it tracks both the oldest

active, and the transaction that was oldest active most recently, which it calls the

oldest snapshot. (I think this is a bug). And that value - oldest snapshot - is also

written into the database header page.

In a shared server, the oldest active and the oldest snapshot move along pretty

smoothly together, barring some unusual combination of activity - lots of commits

of old transactions just before the next transaction starts. In Classic, however, the

individual processes have different ideas of what the previous oldest active (aka

Oldest Snapshot) was because transactions start in different processes, so

different processes will have read the lock table at different times. Given the

number of connections and clients, that probably explains the difference you see.

Making all indices unique

Firebird User asked:

A colleague read years ago that to improve performance, it is recommended to

convert all indexes to unique by adding a primary key at the end. For example, an

42

index on column (A) is de�ned on columns (A, PK). What is the point of this

recommendation?

Pavel Císař answers:

I assume this "recommendation" stems from the inef�ciency of removing duplicate

index keys during garbage collection. This problem was inherited by Firebird from

InterBase, and was completely removed in Firebird 2.0.

The problem was basically that garbage collection on indexes with lots of

duplicates could eat up your CPU because duplicates were stored with the most

recent at the front of the list, then removed oldest �rst. Removing a record

required reading the whole duplicate chain. Adding the primary key to the end of

the index key preserves its basic functionality (Firebird will use only the initial part

of the composite key), but eliminates duplicates and thus this problem.

If you’re worried that this trick will skew your index statistics, don’t worry. Since

version 2.0.6, statistics are also stored for individual segments, so if the optimizer

is considering using only part of the index key, it has accurate statistics available.

However, indexes now order duplicates by the record number of the record to be

deleted, so the garbage collector can look up the entry to be removed by a

combination of the value - not very selective - and the record number - very

selective. For the purpose of garbage collection, all indexes are now unique.

Currently, the primary key trick does not bring any bene�t, nor does it cause any

harm, other than unnecessary waste of space.

However, the signi�cant improvement in the ef�ciency of removing duplicate keys

does not mean that removing garbage from indexes is now a cheap matter. It is

necessary to realize that each such operation may involve writing several pages,

including their reorganization. When cleaning the index for small changes in the

database, this may not be noticeable, but it can signi�cantly slow down the server

when removing a larger number of records, for example after a mass change or

deletion.

43

How much space does NULL take up?

aiylam_s asked:

I have 2 Firebird databases, each with 10,000 records. The second has 4

VARCHAR columns:

- ID VARCHAR(40) indexed not-null

- LOCATION VARCHAR(250) indexed not-null

- LOCATION_PART1 VARCHAR(32000)

- LOCATION_PART2 VARCHAR(32000)

The size of the �rst database on disk is 1941504 bytes (~1.9 MB). The size of the

second on disk is 14700544 bytes (~14.7MB). Do 20,000 NULLS really take up

12759040 bytes (~12.7MB)? That corresponds to about 638 bytes per NULL! Can

anybody shed some light on this?

Ann W. Harrison answers:

Yup. The null is only one bit, but the record is laid out with all �elds fully expanded

and null �elds zeroed or blanked. Then the record is compressed, using a one byte

run-length encoding. Up to 127 identical bytes turn into two bytes, which is OK,

but not great when you have 32,000 byte �elds - that’s a bit more than 500 bytes…

and I’ve probably forgotten something.

The record compression method has been signi�cantly improved in Firebird 5, so
the amount of unused zeroed space is much smaller than in earlier versions.
However, it s�ll takes up more than a single bit.

44

Planet Firebird
In this new regular section, we will summarize recent activities and initiatives
within the Firebird database community. This will include coverage of events,
news, achievements, and notable community projects from the past quarter.
Additionally, we’ll highlight plans and opportunities for involvement in the
upcoming period, such as conferences, meetups, and collaborative efforts
within the Firebird ecosystem. This section will keep you informed about
ongoing work both within and outside the Firebird project.

We encourage you to support this effort by sharing information about any
relevant events, achievements, projects, or any other activities that you believe
should be highlighted—whether they have already taken place or are planned
for the future. Your input will help us to keep the community connected and
informed.

You can reach us at either the "emberwings" or "foundation" @firebirdsql.org
email addresses.

45

Firebird Advent Calendar

This year is special for Firebird as we celebrate the project’s 25th anniversary. If
you’ve been using Firebird since its first version, then a quarter-century of
stability is certainly worth celebrating—almost like a silver wedding anniversary,
right? To mark this milestone, we introduced a special Advent calendar on our
website last December—a festive lead-up to the 25th anniversary celebration. It
offered a month-long journey through Firebird’s history and community spirit,
and for those who missed it, it remained available until the end of January
2025.

Each day, a new door on the calendar revealed unique Firebird-themed
holiday content. From short stories (a selection of which appeared in the last
issue) to festive pictures and songs, there was something for everyone. All the
songs from the calendar, along with many more, are available on the Firebird
Songs YouTube channel. We also included several fun quizzes to test your
knowledge of Firebird’s past, present, and future.

In addition to the festivities, we used this event to introduce anonymous
questionnaires, allowing users to share insights about how they use Firebird
and the challenges they face. If you’d like to help us better understand your
needs, we encourage you to take a moment to fill them out. A description of
the questionnaires, along with links, can be found on the last page of each
issue.

46

https://www.youtube.com/@firebird-songs
https://www.youtube.com/@firebird-songs

A sad day for the Firebird Project

Helen Borrie, a key figure in the Firebird relational database project and a
longtime contributor at IBPhoenix, passed away on January 2, 2025. Her
contributions were essential to Firebird’s creation and its development over
the past 25 years.

Helen’s dedication to the project was unwavering. She played a critical role in
establishing the Firebird Foundation and managed its operations as the
Foundation’s Secretary. Her work ensured that the project had the structure
and support needed to grow and succeed. She often worked behind the
scenes, making sure things ran smoothly and that the community had the
resources it needed.

She was also the author of The Firebird Book, a comprehensive guide that
became an invaluable resource for users and developers. Helen’s writing
made Firebird accessible to many, helping them understand and use the
database effectively. She was always ready to assist others, sharing her
knowledge generously within the user community.

Helen’s quiet leadership and dedication left a lasting impact on Firebird and its
users. Her efforts helped build not just a powerful database but also a strong,
collaborative community. She will be deeply missed by all who knew her and
benefited from her work.

47

https://www.ibphoenix.com/products/firebird-book

The Firebird Butler Project
By Pavel Císař (IBPhoenix)

For many years, Firebird users have expressed frustration over the lack of
suitable tools for administering and managing their deployments. Firebird
inherited only a limited set of command-line tools from InterBase, and due to
resource constraints, the project was unable to develop and maintain
comprehensive management solutions. Instead, efforts were focused on
enabling external development through features like trace services and
monitoring tables.

This situation persisted until 2018, when IBPhoenix proposed a new division
within the Firebird Project dedicated exclusively to addressing this problem.
This division, named Firebird Butler, was established in January 2019 with the
long-term goal of creating an ecosystem that provides essential management
tools while remaining open for external contributions and enhancements.

48

The Challenge of IT Infrastructure Management

Managing IT infrastructure boils down to two fundamental aspects: disaster
preven�on and recovery, and system control to maintain opera�onal stability.

Both elements must work in sync, relying on tools that measure parameters,

analyze data, and execute actions—either automatically or with human

intervention.

In reality, however, this is far from simple. The diversity of deployment

requirements, evolving needs, and an overwhelming number of partial solutions

make it an ongoing struggle. No single tool covers all scenarios, and the more

capable a system is, the more complex and demanding it becomes. IT teams

frequently encounter situations where solutions handle 70%–98% of their needs,

but the remaining gap proves frustratingly dif�cult to bridge without custom

workarounds or complex integrations.

Firebird deployment management is no exception. While general-purpose IT tools

exist, the number of solutions speci�cally tailored for Firebird is small—and their

usefulness stops at Firebird-speci�c issues. Yet, database management is only one

part of a broader IT landscape. Consider a scenario where an IT team must manage

a Firebird-based application that empower multiple semi-automated production

facilities located in different countries—Firebird is just one piece of that puzzle.

The unavoidable reality is that every organization ends up using some custom

parts in their �nal solution. It’s also not uncommon that the more effort you put

into tailoring that solution, the more effective, scalable, and reliable it becomes. So,

instead of searching for a so-called "Golden Product" that attempts to cover all

possible needs, a better approach is to seek a Solu�on Construc�on Kit—a

framework that allows users to assemble only the tools they truly need in the most

ef�cient way. This philosophy enables a tailored, adaptable, and scalable solution

rather than a rigid, one-size-�ts-all approach. This is where Firebird Butler enters

the picture, offering an open, �exible, and modular approach to Firebird

management that empowers users to build exactly what they require with minimal

overhead.

49

The Vision Behind Firebird Butler

The Firebird Butler Project aims to address the long-standing gap in Firebird

database management by leveraging open standards for interoperability. Rather

than relying on a single monolithic tool, Firebird Butler de�nes a modular

framework where interoperable services can be assembled into customized

solutions tailored to speci�c needs.

A useful analogy is the LEGO system: Firebird Butler establishes guidelines for

designing individual components that seamlessly �t together, regardless of their

origin or implementation. This ensures that services developed by the Firebird

Project or third parties can integrate smoothly, allowing for �exible, purpose-built

solutions. By adhering to these open standards, Firebird Butler fosters seamless

interoperability across platforms and implementations.

"That sounds great," you may say, "but how exactly would such a software LEGO

system work?" To explain, we must �rst look at another analogy.

One of the best historical examples of a component-driven architecture is the

Delphi VCL (Visual Component Library). The VCL revolutionized software

development by offering structured, reusable components that developers could

easily integrate into their applications. Firebird Butler adopts the same

component-based philosophy but adapts it to meet modern requirements.

Since Delphi’s launch in 1995, the IT landscape has evolved dramatically. Today,

key concerns include availability across multiple platforms, distributed

architectures, and scalability. Modern systems must process vast amounts of data,

increasingly incorporating AI and adaptive learning mechanisms to handle

complexity ef�ciently. As interconnectivity expands, software components have

transitioned into service-oriented, messaging-based architectures to meet these

increasing demands.

However, rapid technological advancements have created two major issues:

1. Service integration has prioritized convenience over ef�ciency, leading to

suboptimal solutions that rely on web technologies like HTTP and JSON, as well as

complex messaging protocols like AMQP, which often require entire stacks of

additional software, instead of well-optimized communication methods.

50

2. The software world has become fragmented, with small component systems and

large distributed systems existing independently, lacking a seamless way to bridge

them.

Had Firebird Butler been built on existing systems and widely used technologies

for component interaction, it would have faced a dif�cult tradeoff: prioritizing

either ef�ciency but limited scalability or scalability at the cost of increased

complexity and lower ef�ciency. Ultimately, this would restrict the range of viable

use cases.

Since one of Firebird’s most valued features is its scalability philosophy—"from

embedded to enterprise", the Firebird Butler Project sought an innova�ve solu�on
that could bring this principle into the world of software components.

Thus, the core idea behind Firebird Butler was to design a system of software

components that, when used within a monolithic application or process, would

function similarly to Delphi VCL, while also supporting distributed solutions

spanning multiple processes or network nodes using the same components.

51

...

Technological Challenges and Solutions

One of the key challenges in designing Firebird Butler is balancing the ef�ciency of

in-process communication with the �exibility of distributed services. Traditional

component-based architectures, such as Delphi’s VCL, rely on direct method calls

that enable fast and predictable interactions between components. These calls,

however, do not scale well across multiple threads, processes, or networked

environments. In contrast, distributed systems favor TCP/IP-based

communication, which allows components to operate independently but often

introduces latency and complexity due to its inherently stateless and

asynchronous nature.

To bridge this gap, Firebird Butler takes a hybrid approach by adopting messaging

as the core communication method between components. Instead of relying on

direct calls or remote procedure calls (RPCs), which can hinder scalability, Butler

uses ZeroMQ as its messaging backbone. ZeroMQ is designed for high-

performance, lightweight communication, making it equally e�ec�ve for intra-

process, inter-process, and networked communication. This ensures that services

can scale seamlessly while maintaining ef�cient message delivery.

Another major challenge is balancing tight and loose coupling between services. In

a tightly coupled system, components expect stable, persistent connections, which

works well within a single application but becomes unreliable when extended over

a network. On the other hand, loosely coupled services allow for more resilient

and scalable deployments, but they introduce complexity in managing interactions.

Firebird Butler addresses this by supporting both tight and loose coupling based

on deployment needs. Within a local environment, components can communicate

with minimal overhead. For networked services, Butler ensures robustness by

enabling stateless, asynchronous messaging while still allowing for stateful

interactions where necessary.

Finally, the choice between synchronous and asynchronous processing plays a

critical role in system performance. Synchronous execution is straightforward but

limits scalability, as each operation must complete before the next begins.

Asynchronous processing, in contrast, enables better resource utilization by

52

allowing multiple tasks to execute in parallel.

Firebird Butler prioritizes asynchronous service communication without enforcing

a rigid implementation model. Developers can choose the best approach for their

needs while ensuring compatibility with the overall architecture.

By integrating messaging-based communication, �exible coupling models, and

scalable processing strategies, Firebird Butler creates a foundation that combines

the ef�ciency of component-based development with the adaptability of modern

distributed architectures. This approach ensures that solutions built with Butler

remain both highly performant and scalable, capable of handling anything from

local applications to large-scale distributed systems.

ZeroMQ: The Messaging Backbone

Building an effective messaging system for Firebird Butler required a solution that

was not only fast and lightweight, but also �exible and scalable enough to

accommodate diverse deployment scenarios. Many traditional messaging systems

rely on centralized message brokers such as RabbitMQ or Kafka, which come with

built-in reliability features but also introduce complexity and overhead. Firebird

Butler needed a different approach—one that allowed for direct communication

between services without forcing a rigid architecture. This is where ZeroMQ stood

out as the ideal choice.

Unlike full-scale message queue systems, ZeroMQ does not require a central

broker, but importantly, it does not prohibit developers from implementing one

either. Instead, it provides the building blocks for messaging, allowing developers

to construct as much infrastructure as they actually need, rather than being forced

into adopting heavyweight, pre-de�ned solutions. This aligns perfectly with

Firebird Butler’s philosophy of modularity and �exibility—we needed a system that

could operate with minimal infrastructure yet scale up when necessary.

ZeroMQ’s appeal also lies in its diverse messaging patterns, which include

request/reply, publish/subscribe, push/pull, and dealer/router models. This means

that Firebird Butler services can communicate synchronously or asynchronously,

with tight or loose coupling, depending on the speci�c needs of the deployment.

Additionally, ZeroMQ supports multiple transport protocols, including TCP for

53

distributed communication, IPC for inter-process messaging, and INPROC for

ultra-fast intra-process communication. This versatility ensures that Firebird

Butler can be deployed in small, single-machine setups as well as complex

distributed networks without re-engineering its messaging layer.

Another advantage is performance. ZeroMQ is designed to be lightweight and

high-speed, outperforming many traditional TCP-based applications through

ef�cient message batching and an internal threading model. This makes it an

excellent �t for Firebird Butler, where low-latency communication between

services is essential.

Of course, ZeroMQ is not without its drawbacks. Unlike broker-based messaging

systems, it does not offer built-in message persistence or guaranteed delivery,

which means applications using it must handle these concerns at a higher level.

However, for Firebird Butler’s purposes, ZeroMQ provides the right balance of

performance, �exibility, and scalability. It gives us the freedom to implement only

what is required while avoiding the overhead of a fully-�edged enterprise

messaging system.

ZeroMQ has gained widespread adoption across industries, proving its reliability

and �exibility. It provides a low-level C API with high-level bindings in over 40

languages, including Python, Delphi, FreePascal, Java, PHP, Ruby, C, C++, C#,

Erlang, and Perl. Additionally, it is available as pure Java (JeroMQ) and pure C#

(NetMQ) implementations, both of�cially maintained by the ZeroMQ community.

Its adaptability has made it the choice of numerous organizations, including AT&T,

Cisco, EA, Los Alamos Labs, NASA, Weta Digital, Zynga, Spotify, Samsung

Electronics, IBM, Microsoft, and CERN. Developers can explore the ZGuide for in-

depth explanations and practical examples in over 30 programming languages,

reinforcing its role as a versatile messaging solution.

Ultimately, although ZeroMQ is not perfect, it is well-suited for the goals of

Firebird Butler. It allows us to create fast, adaptable, and ef�cient communication

channels between services, reinforcing the project’s fundamental vision: a

modular, scalable, and lightweight system that grows with the needs of its users.

54

From speci�cation to implementation

Firebird Butler Pla�orm speci�cations (a set of RFC documents) serve as

blueprints for implementing the platform in various programming languages. The

reference implementation is in Python, but the Butler division envisions

supporting C#, Java, Delphi, and Free Pascal. However, at present, Firebird Project

resources allow for implementation only in Python.

Since the platform speci�cation does not dictate an exact API or implementation

details, individual implementations may differ in design, architecture, features, and

API. Multiple implementations in the same language could even coexist, offering

different architectural approaches—such as a traditional thread/process model

versus an asynchronous processing model.

The Firebird Butler Platform is essential for creating Butler Services, which are

software components that communicate using ZeroMQ sockets and the Firebird
Butler Service Protocol. A service can use multiple ZeroMQ sockets for different

tasks, but only one primary socket is required to comply with the Butler Service

Protocol.

Butler Services could do anything, but a well designed service does only one task,

or a small set of closely related tasks within single category. While respecting the

rule of simplicity, services can be divided into several basic types:

Measuring services, which collect and transmit data, such as monitoring table

statistics.

Processing services, which receive data, process it, and output results—

examples include analytics engines, data transformers, brokers, routers, and

load balancers.

Provider services, which execute tasks on request, such as performing database

backups.

Control services, which manage other services within the ecosystem.

55

Saturnin: A Reference Implementation

The Saturnin project has several goals:

Provide reference implementations for Firebird Butler speci�cations, serving as

examples for implementations in other languages.

Act as a proof-of-concept for Butler speci�cations and a real-world test of its

capabilities in managing Firebird databases through a service-oriented,

message-driven approach.

Deliver a platform for developing and deploying Butler services and complete

solutions.

Offer a library of selected services for direct use.

Development began in February 2019, with the �rst prototype demonstrated at

the Firebird Conference in Berlin in October 2019. This prototype implemented

the Firebird Butler Service Protocol (FBSP), Firebird Butler Datapipe Protocol

(FBDP), test services, and a special "Node" service for running and managing other

services, including a CLI console for interaction. This milestone primarily aimed to

validate the Butler speci�cations and protocols.

Initially, the saturnin-sdk repository contained development tools and

protocols, while the saturnin repository handled service development and

deployment. Development continued through 2020, despite the COVID outbreak,

focusing on core fundamentals and a new Firebird driver for Python. The

firebird-base package was introduced to handle con�gurations, registries,

logging, tracing, buffer management etc., which were later used in the new

firebird-driver package and Saturnin itself.

During development, the project underwent its �rst major restructuring. Code for

running services was moved to a new saturnin-core repository, leaving

saturnin-sdk with only development tools and sample services. The saturnin

repository became a service library for Saturnin-based solutions, with both

saturnin and saturnin-sdk depending on saturnin-core. The Node

service remained the primary service deployment platform, but by the end of the

year, it became clear that a different approach was needed for deployment.

56

In 2021, Saturnin underwent a signi�cant architectural redesign. The saturnin

repository evolved into a comprehensive development, deployment, and

management platform, absorbing saturnin-core. The saturnin-core was

repurposed as a library of deployable services, while saturnin-sdk became an

add-on for development-related extensions. With this shift, saturnin became

the primary dependency.

The transition was set to complete in 2022 but was delayed for six months due to

work on a new QA system for Firebird, based on pytest and the new Python driver.

It was completed in March 2023, resulting in 0.8.0 release with a core library of 13

micro-services, and support for service bundles (solutions) built as standalone

executables produced by Nuitka Python compiler.

At this stage, Saturnin was ready for real-world testing. Discussions began with

several Firebird users about piloting a simple Firebird-management solution, but

external factors halted the initiative. However, development continued,

culminating in the release of version 0.9.0 in October 2023. Attention then shifted

to transitioning the Firebird Foundation from Australia to the Czech Republic.

Development resumed in 2025, beginning with a revitalization of the entire stack

of eight Python packages currently maintained by the Firebird Project.

The project is named Saturnin a�er the clever and composed butler from Zdeněk
Jirotka's novel Saturnin. Much like Jeeves from P.G. Wodehouse’s stories and
Jarvis from Iron Man, Saturnin blends subtlety with a touch of humor and
authority. His character, known for his re�ned intelligence and quiet e�ciency,
orchestrates events behind the scenes with grace. The name re�ects this balance
of playful elegance and unwavering loyalty, capturing the essence of a system
that operates with quiet precision and composure.

57

Conclusion

For the average Firebird user, Butler represents a forward-thinking step in

database automation. Its open architecture means that future service

implementations can extend its capabilities far beyond what’s possible today.

Instead of relying on closed, monolithic tools, Butler enables an ecosystem of

�exible, interoperable services that can be mixed and matched as needed.

Firebird Butler and Saturnin are still in their infancy, but their potential is

immense. The project needs developers to contribute, early adopters to test its

capabilities, and sponsors to support its continued growth. If you believe in the

power of open standards and service-oriented database management, now is the

time to get involved.

In the next issue, we will introduce you to the architecture and capabilities of

Saturnin.

Resources

1. The Firebird Butler, An Introduction presentation from Berlin 2019 Conference

2. Firebird Butler website with speci�cations

3. Butler Hub on Firebird website

4. ZeroMQ and ZGuide

5. Nuitka Python Compiler

58

https://www.firebirdsql.org/file/community/conference-2019/6_butlerintro.pdf
https://firebird-butler.rtfd.io/
https://www.firebirdsql.org/en/firebird-butler-dev/
http://zeromq.org/
http://zguide.zeromq.org/
https://nuitka.net/

...And now for something completely di�erent

The Secret of the Firebird

Firebird was a legend in the world of databases. Over decades, the open-source
powerhouse had earned its place as a reliable and e�cient system, quietly powering
industries across the globe. Its user community stretched far and wide, and its long
history was intertwined with contribu�ons from countless developers—some
independent enthusiasts, others employees of companies heavily invested in its
success.

With such a sprawling history, myths inevitably grew around Firebird. Tales of hidden
tricks, mysterious parameters, and forgo�en experimental branches swirled through
forums and mailing lists. Some stories were true, some exaggerated, and others
outright fabrica�ons. And a�er decades, it is hard to tell them apart.

 Renata Alvarez was an experienced Firebird user, known among her colleagues for

her sharp intuition and tenacity. Yet, even her skills couldn’t solve the performance

issues plaguing her team’s latest project—a resource-intensive �nancial

59

application.

 Her team had tried everything: optimizing queries, tweaking indices, and

experimenting with every documented con�guration option. Still, the database

groaned under the weight of their workload, and their deadlines loomed ever

closer. Frustrated but unwilling to give up, Renata turned to the community for

help.

In her search, she stumbled across an old forum post that caught her attention:

“Performance bottlenecks? Maybe you haven’t unlocked all the Firebird has to

offer. Ever heard of TRB? 😉”

The cryptic comment led her down a rabbit hole of old discussion threads,

uncovering fragments of lore about Firebird’s development history. One name kept

surfacing: Ignis, a long-retired core Firebird developer. Few in the community

seemed to remember him, but those who did described him as a "loner genius" who

avoided public forums and conferences, communicating only within a circle of

Firebird’s core developers.

“Ignis wrote some of the most brilliant code in the project,” one user claimed.

Through fragments of old public forum discussions and development mailing list

archives, Renata pieced together the story of Ignis. Among his contributions to

Firebird was an ambitious project he called the Throughput Rate Booster (or TRB

for short). According to old conversations, TRB was designed to push Firebird’s

performance to its absolute limits, extracting every ounce of potential from the

hardware while consuming minimal resources.

But TRB had never been publicly announced. One archived message explained

why:

“Ignis didn’t want to raise false hopes. He insisted we keep it under wraps until

it's perfect. No public announcements, no documentation—just testing,

iteration, and silence.”

60

Discussions among Ignis’s collaborators, with cryptic mentions of "overheating

�ames" and warnings to "tread carefully," hinted at potential risks inherent in

TRB’s architecture. While Renata couldn’t fully decipher their meaning, the

secrecy surrounding the project suddenly made sense.

Renata searched for any mention of the project’s conclusion, but the trail vanished

into obscurity. Did Ignis succeed? Or did the risks prove insurmountable?

There was only one way to �nd out.

Renata opened Firebird’s source code repository for the �rst time. It was

overwhelming—thousands of �les, decades of commits, branching histories, and

countless pull requests created a tangled web. But she was determined to uncover

the truth.

She started to follow the Ignis's trail, and at �rst, the commits seemed unrelated:

simple bug �xes or minor optimizations. But as she searched for clues tied to Ignis,

patterns began to emerge. Ignis’s �ngerprints were scattered throughout the

codebase—alterations to the query planner, threading model, and transaction

handling. In one commit related to query optimization, she found:

// Optimization hooks added. For testing only. Handle with care.

Another commit, touching on multi-threading, carried an equally mysterious note:

// Experimental �ightpaths – requires manual tuning.

The more Renata followed Ignis’s trail, the more pieces of the puzzle she

uncovered. Each comment hinted at a larger picture, a hidden layer of functionality

buried within Firebird’s architecture. One commit led her to a later removed �le

labeled �ightpaths.h, which contained only bunch of enigmatic constant de�nitions

with strange comment:

// The Firebird soars when its �ames are balanced.

In the query planner module, she uncovered a tantalizing line:

61

// TRB logic added. Testing incomplete.

Each discovery led her deeper into the labyrinth. Ignis and his collaborators had

buried the TRB code behind layers of indirection, conditionals, and seemingly

unrelated changes. It was so well hidden that even current Firebird maintainers

seemed unaware of its presence. Finally, after hours of meticulous searching and

comparisons, Renata found the core of TRB’s logic present in the master branch.

Her excitement grew. TRB was still in the Firebird code! But a major question

remained unanswered: how was it activated?

Renata pored over the comments and surrounding code but found no clear

instructions. The developers had deliberately kept the activation method obscure.

Still, she reasoned that they must have needed a way to test it during development.

“It has to be external,” she thought. “Something they could control without

touching the code every time.”

Two possibilities stood out: an environment variable or a con�guration �le entry.

Both were standard practices for enabling hidden features during testing. Renata

decided to start with the simpler option.

Opening her �rebird.conf �le, she added a single line based on everything she had

learned:

turbo = True

Renata restarted the server and immediately opened the �rebird.log �le. Among

the usual startup messages, one stood out:

[INFO] TRB Mode Engaged: The Firebird takes �ight.

Her heart raced. She had done it.

Renata ran her benchmarks, and the results were astonishing. Queries that had

dragged for minutes completed in seconds. Complex joins and massive data

migrations �ew by effortlessly. It was as if Firebird had been holding back its true

62

potential all along.

But the exhilaration was short-lived.

Soon, she noticed anomalies—missing rows, corrupted values, and inconsistencies

in certain operations. The database logs �lled with warnings:

[WARNING] Flightpath integrity degraded. Risk of instability.

[WARNING] Hardware limits exceeded – system overload imminent.

Her server’s CPU temperatures spiked dangerously. One machine shut itself down

to avoid frying, while another suffered permanent hardware damage.

Frustrated and alarmed, Renata turned to the online developer community. She

posted a carefully worded inquiry, sharing her �ndings without revealing too much

detail. Most responses were skeptical, brushing off her claims as impossible or

fabricated. But one private message stood out, from a user named Phoenix42:

“You’ve unlocked the Firebird’s secret, haven’t you? TRB was Ignis’s greatest

work—and his greatest failure. It wasn’t safe then, and it’s not safe now. We hid

it for a reason. Use it wisely, or let it rest.”

Renata realized that Phoenix42 must have been one of Ignis’s collaborators. At

last, she understood why Ignis and his team had concealed TRB so carefully. The

weight of that truth pressed down on her—a mix of awe at their ingenuity and the

sobering reality of the dangers they had tried to contain.

Renata stared at her notes for hours, weighing her options. She could share her

discovery with the Firebird community, mobilizing developers worldwide to

stabilize TRB. But the risks were enormous. If mishandled, TRB could cause

catastrophic failures and harm Firebird’s reputation as a solid, dependable

database system.

In the end, she made the hard decision. Renata deleted her detailed �ndings,

leaving only cryptic references in her personal notes. She told no one about Turbo

Mode, trusting that someday, someone better equipped might revisit it.

63

But she couldn’t forget what she’d found. Her research hinted at other forgotten

features and experiments within Firebird’s code—untapped potential that might

one day change the database world. And unlike TRB, some, she believed, would be

safe to explore.

Meanwhile, the legacy of Ignis burned in Firebird’s source code, waiting for the

next brave soul to unlock its hidden potential.

Although this story is �c�onal, it contains a grain of truth. Because Firebird, like
any complex so�ware, has its secrets, known only to insiders. Don't believe it?
Then try running the following query on the sample EMPLOYEE database:

with s1 as (select ORDER_STATUS, count(*) as sc from SALES group by 1),

s2 as (select ITEM_TYPE, count(*) as sc, avg(QTY_ORDERED) as sa,

sum(QTY_ORDERED) as ss, min(QTY_ORDERED) as si, max(QTY_ORDERED) as sx

from SALES group by 1)

select �rst 1 skip 2 sc from s1

union select �rst 1 sc from s1

union select �rst 1 skip 1 sx + sx + sx from s2

union select �rst 1 skip 1 sc + sa + ss + sx from s2

union select �rst 1 sa - sc - sc - si from s2

union select �rst 1 skip 1 sc + sc from s1

If you can't �gure out what the result means, wait for the next issue.

Most secrets (or Easter eggs, if you will) fall into the category of forgo�en
knowledge, not-so-obvious uses of certain features and their combina�ons,
internal implementa�on details, etc. They usually have no real meaning and use
for ordinary users, but they can be a secret ace up your sleeve in solving some
unusual situa�ons. The truth is that most professionals don't like to share such
secrets, just like magicians don't reveal their tricks, or chefs their special
ingredients. So if you discover some, good for you.

64

However, there are also secrets that are hidden on purpose (and we really don't
mean the infamous LOCKSMITH account, which has long since been deleted).
One such secret of the Firebird, although hidden in plain sight, is par�cularly
hilarious. And if you can uncover it, it will bring you fame.

This issue contains several clues on how to �nd it, and we will gradually present
you with more.

Write to us if you think you have discovered it

65

mailto:emberwings@firebirdsql.org

The of�cial quarterly magazine of the Firebird Project

Do you develop with Firebird?
Are you using Firebird as a database backend for your applications? Share
your experience and help shape its future! Your insights on how you
develop with Firebird, the tools you rely on, and your wishlist for
improvements will directly impact its development. The survey takes just
5-10 minutes—join us in building a better Firebird!

Take the Developer Experience survey

Do you manage Firebird deployment?
Your insights as a Firebird administrator are invaluable! By taking just a few
minutes to complete this survey, you'll help shape the future of Firebird,
identify key challenges, and improve the tools and features you use every
day.

Participate in the Admin survey

We value your opinion! Help us improve EmberWings magazine by
sharing your thoughts and feedback. Our quick questionnaire will only
take a few minutes, and your responses will guide us in making future
issues more relevant, engaging, and valuable to the Firebird community.

Help us improve EmberWings!

Published by Firebird Foundation z.s. © 2025

Licensed under CC BY-SA 4.0

...

https://forms.gle/WuR1oLFzsgGbSjRe6
https://forms.gle/ZFrQ726gCLTQkCdy7
https://forms.gle/CXBiG3pUR2dJFfo97
https://creativecommons.org/licenses/by-sa/4.0/

